1. Determine if each series below is convergent or divergent. If the series is convergent, find its sum.
(a) $\sum_{n=2}^{\infty} \frac{2}{n^{2}-1}$
(b) $\sum_{n=0}^{\infty} \frac{\pi^{n}}{3^{n+1}}$
(c) $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^{n}}$
2. Find the values of x for which each series converges. For those values, find the sum of the series.
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{(\cos (x))^{n}}{2^{n}}$
3. If the n-th partial sum of the series $\sum_{n=1}^{\infty} a_{n}$ is

$$
s_{n}=3-n 2^{-n},
$$

find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.

