Objectives:

• Compute the areas between curves.

Motivation: We've been computing the between a curve and the x-axis. How can we compute the area between two curves?

Consider the region, R, between the two curves y = f(x) and y = g(x) between the vertical lines x = a and x = b where f and g are continuous functions and $f(x) \ge g(x)$ for all x in [a, b].

What if we used rectangles?

How can we make this approximation better?

We can express this area, A, in terms of a Riemann sum:

$$A =$$

$$A =$$

Example 1 Find the area of the region bounded by the curves $f(x) = x^3$ and g(x) = 0 between x = 1 and x = 5.

Example 2 Find the area of the region bounded by the curves $f(x) = e^x$ and g(x) = x between x = 0 and x = 1.

Example 3 Find the area of the region enclosed by the parabola $y = 5x - x^2$ and the line y = x.

Example 4 Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.