Objectives:

- Practice using properties of definite integrals.
- Compare values of definite integrals.
- Use antiderivatives to evaluate definite integrals.
- 1. $\int_0^{2\pi} (x + \sin(x)) dx$

2. The graphs of f(x) and g(x) are given below. Calculate the integrals.

- (a) $\int_{-2}^{1} f(x) + g(x) dx$
- (b) $\int_{2}^{5} 10f(x)dx =$
- (c) $\int_{-2}^{1} g(x) + 5dx$
- (d) $\int_{2}^{1} g(x)dx + \int_{4}^{2} g(x)dx$

Comparing Integrals: For the function f(x) in the previous problem, draw a function h(x) on the axis such that $h(x) \ge f(x)$ for all x values in the interval [0,5]:

How does $\int_0^5 h(x)$ compare to $\int_0^5 f(x)$?

In general we can say that if f(x) _____ h(x) for all x in the interval [a,b], then $\int_a^b f(x)$ _____ $\int_a^b h(x)$.

In particular:

- (1) If $f(x) \ge 0$ for all x in [a, b]:
- (2) If $m \leq f(x) \leq M$ for all x in [a,b] where m,M are constants:

Example: It would be very difficult to calculate $\int_{-2}^{3} \sin\left(\frac{1}{x}\right) dx$. However, we can compare the integral we want to know about to integrals that are easy to compute:

Evaluation Theorem (or, Fundamental Theorem of Calculus, Part II)

If f is _____ on ____ , (i.e. F'(x) = _____), then

We use the notation to denote _____.

Note:

Examples

1.
$$\int_{-1}^{2} x^4 dx$$

$$2. \int_0^1 \frac{1}{1+x^2} dx$$

3.
$$\int_{2}^{10} \left(e^x + 5x - \frac{1}{x} \right) dx$$

Because of this relationship b	between the integral of $f(x)$ and the antiderivative of $f(x)$, we write
to mean	. We call this expression an

Note:

So now we have 3 ways of calculating an indefinite integral:

Interpreting the integral:

The Evaluation Theorem also appears as the _______. Since F'(x) = f(x) is the _______, the Evaluation Theorem tell us that the _______ is equal to ______, which we call the _______.

Examples:

If $f(x)$ represents:	Then $\int_a^b f(x)dx = F(b) - F(a)$ represents:
Velocity	
Marginal Cost	
Growth Rate of a Population	

Note: