Objectives:

- Find derivatives of implicit functions.

Background:

If we have a formula involving x and y, like

$$
x^{2}+y^{2}=25
$$

we have a curve that essentially defines y as a function of x near a specific point even though it isn't solved for y. We say y is implicitly a function of x.

Main Idea: We can sneakily find $\frac{d y}{d x}$ (in other words, y^{\prime}) without solving explicitly for y.
How? Differentiate both sides of the equation remembering all the while that y is a function of x.

Example 1 Consider $x^{2}+y^{2}=25$. Find the slope of the tangent line at the point $(3,4)$. Step 1. Differentiate:

Step 2. Solve for y^{\prime} :

Step 3. Substitute values:
Further questions:

1. What is the equation of the tangent line at the point $(3,4)$?
2. Where is the tangent line horizontal?
3. Where is the tangent line vertical?

Example 2 Find a formula for y^{\prime} and find where the line tangent to the curve is vertical for the curve given by

$$
x^{2}+x y+x+y=1
$$

Differentiate:

Solve for y^{\prime} :

Example 3 Find the equation of the tangent line to the curve given below at the point $(1,2)$.

$$
x^{3}+y^{3}+x^{2} y^{2}=13
$$

