Objectives:

- Take derivatives of exponential functions.

Derivative of $f(x)=e^{x}$:

$$
\frac{d}{d x}\left(e^{x}\right)=
$$

Example: Find $f^{\prime}(x)$ for $f(x)=5 e^{x}$.

Example: Find $\frac{d}{d x}(f(x))$ for $f(x)=4 x^{7}+2 e^{x}$.

Derivative of an exponential function with arbitrary base b :

$$
\frac{d}{d x}\left(b^{x}\right)=
$$

Example: Find $f^{\prime}(x)$ for $f(x)=2^{x}$.

Example: Find $\frac{d}{d x}(g(x))$ for $g(x)=4 \cdot 10^{x}+x^{3}+e^{x}$.

Example: Find the derivative of $s(t)=\pi^{x}-3 e^{x}+x^{\pi}+\pi^{2}$.

Question: What about $f(x)=e^{x^{2}}$?
Answer:

Explanation of why if $f(x)=e^{x}$, then $f^{\prime}(x)=e^{x}$:

Example: During the 2000's, the population of Hungary was modeled by

$$
P(t)=10.186(0.997)^{t}
$$

$(P(t)$ in millions of people, t in years since 2000). Assuming this model remains accurate:

1. What does the model say the population of Hungary was in the year 2000 ?
2. What does the model predict for the population of Hungary in the year 2020?
3. How fast does the model predict the population will increase/decrease in 2020? (Include units)

Example: Find the equation of the tangent line to $f(x)=3 e^{x}$ at $x=1$.

