Objectives:

- Define relationships between $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
- Use information from $f(x)$ to graph $f^{\prime}(x)$.

What does $f(x)$ tell us about $f^{\prime}(x)$?
If $f(x)$ is \qquad at $x=a$, then $f^{\prime}(a)$ is \qquad .
If $f(x)$ is \qquad at $x=a$, then $f^{\prime}(a)$ is \qquad .
If $f(x)$ has a \qquad at $x=a$, then $f^{\prime}(a)=$ \qquad .

Note: If $f(x)$ is discontinuous at a, has a corner/cusp at a, or has a vertical tangent line at a, then $f^{\prime}(a)$ is undefined.
What does $f(x)$ tell us about $f^{\prime \prime}(x)$?

Concave \qquad

Concave \qquad

If $f(x)$ is \qquad , $f^{\prime}(x)$ is \qquad , so $f^{\prime \prime}(x)$ is \qquad .

If $f(x)$ is \qquad , $f^{\prime}(x)$ is \qquad , so $f^{\prime \prime}(x)$ is \qquad .

Summary

First, look for points where the derivative or second derivative is zero. Then consider where $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are positive or negative, according to the following patterns:

$f(x)$		
$f^{\prime}(x)$		

$f(x)$		
$f^{\prime}(x)$		
$f^{\prime \prime}(x)$		

Example:

	$x \in(1,3)$	$x=3$	$x \in(3,6)$	$x=6$	$x \in(6,7)$
$f(x)$	increasing				
$f^{\prime}(x)$	+				

	$x \in(1,3)$	$x \in(3,5)$	$x \in(5,7)$
$f(x)$	concave down		
$f^{\prime}(x)$	decreasing		
$f^{\prime \prime}(x)$			

We'll use these basic rules in today's class activity. The solutions to the activity will be posted on the course website - I would recommend adding at least some of those examples to your notes.

