Objectives:

- Find limits where the variable goes to infinity and/or the limit is infinite.
- Find vertical and horizontal asymptotes of a given function.
- Choose and use an appropriate strategy to use with a given indeterminant form.

Limits Involving Infinity Graphically:

- $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ and $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ represent
- $\lim _{x \rightarrow \infty} f(x)=L$ and $\lim _{x \rightarrow-\infty} f(x)=L$ represent \qquad .

Common Functions with Limits Involving Infinity:

Using These Common Functions:

Be careful with composite functions! Remember that the direction of the limit of the outside function depends on whether the inside function is increasing or decreasing.

1. $\lim _{x \rightarrow \infty} e^{\frac{1}{x}}$
2. $\lim _{x \rightarrow 0^{+}} e^{\frac{1}{x}}$
3. $\lim _{x \rightarrow 0^{+}} \ln \left(2^{x}\right)$
4. $\lim _{x \rightarrow \infty} \frac{1}{\ln x}$
5. $\lim _{x \rightarrow \infty} \ln \left(\frac{1}{x}\right)$
6. $\lim _{x \rightarrow \infty} \sin (\arctan x)$

Indeterminate Forms

Remember that we call the form " $\frac{0}{0}$ " indeterminate. The forms and \qquad are also indeterminate. (We will see even more types of indeterminate forms later on.)

Useful Strategy:

Indeterminate Form Examples:

1. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3}{x^{2}+x}$
2. $\lim _{x \rightarrow \infty} \frac{3 x-1}{x^{2}+4}$
3. Find horizontal asymptotes of $f(x)=\frac{5 x^{2}+7}{2 x-4}$
4. $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}+1}}$
5. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)$
6. $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+1}-x\right)$
