Objectives:

- Define continuity of a function (from the left, from the right, at a point, and over its domain)
- Determine if a function is continuous at a point or on its domain

Intuition: A function is continuous if you can draw its graph without lifting your pencil. This means it has no HOLES, JUMPS, or VERTICAL ASYMPTOTES

Graphical Example:

This graph is discontinuous at

- $x=-2$ because $\lim _{x \rightarrow-2} f(x)=2$ but $f(x)=0$. This is a removable discontinuity (hole). If we redefined $f(-2)=$
 2 , then $f(x)$ would be continuous at $x=-2$.
- $x=\frac{1}{\text { because } f(1) \text { is undefined. However, }}$ $\lim _{x \rightarrow 1} f(\overline{x)}=3$ so if we defined $f(1)=3$, the function would be continuous at $x=1$. This is another removable discontinuity (hole).
- $x=\frac{2}{}$ because $f(2)$ is undefined. Since $\lim _{x \rightarrow 2^{-}} f(x)=\infty$ and $\lim _{x \rightarrow 2^{+}} f(x)=\infty$, this is an infinite discontinuity (vertical asymptote).
- $x=3$ because $\lim _{x \rightarrow 3^{-}} f(x)=1, \lim _{x \rightarrow 3^{+}} f(x)=4$, and $f(3)=4$. This is a jump discontinuity. We say $f(x)$ is right continuous at $x=4$.

Definitions:

- CONTINUOUS: A function $f(x)$ is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

There are three requirements hidden in this definition:

1. $f(a)$ is defined;
2. $\lim _{x \rightarrow a} f(x)$ exists;
3. the above two values are equal.

If $\lim _{x \rightarrow a} f(x)$ exists, we call $x=a$ a _ REMOVABLE DISCONTINUITY . There are other types of discontinuities such as jumps or vertical asymptotes.

- CONTINUOUS FROM THE RIGHT: A function $f(x)$ is continuous from the right at a number a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

- CONTINUOUS FROM THE LEFT: A function $f(x)$ is continuous from the left at a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Example: Let $p(x)$ be the price I pay for data on my cell phone plan as a function of the number of GB I purchase. If I buy 2 GB or less, I pay $\$ 20$. If I buy more than 2 GB but no more than 40 GB , I pay $\$ 30$. If I purchase more than 40 GB , I pay $\$ 35$. If I don't purchase any data plan, I don't pay anything.

$$
p(x)= \begin{cases}0 & x=0 \\ 20 & 0<x \leq 2 \\ 30 & 2<x \leq 4 \\ 35 & x>4\end{cases}
$$

The function $p(x)$ is discontinuous at \qquad $x=0, x=2$, and $x=4$ The function is left continuous but not continuous at \qquad $x=2$, and $x=4$

Question: Which functions are continuous? To answer this question, we need to think back to the direct substitution property which gives us that polynomials and rational functions satisfy

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

This means polynomial and rational functions are \qquad $!$

Conclusion: The following functions are continuous on their domains: polynomials, rational functions, root functions, trig functions, exponential functions, log functions. Also, sums, differences and products of continuous functions are continuous.

Example: Where is $f(x)=\frac{1}{\sqrt{5-3 x}}$ continuous?
It is a quotient of a polynomial and a root function so it is continuous on its domain:
The domain of $f(x)$ is wherever $5-3 x$ is (i) not zero and (ii) not negative.

$$
\begin{aligned}
5-3 x & >0 \\
-3 x & >-5 \\
x & <\frac{5}{3}
\end{aligned}
$$

