Objectives:

- Find limits of rational functions in cases where we can't substitute
- Find limits of piecewise functions
- Define and use the Squeeze Theorem

We saw last time that if $f(x)$ is a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$. If a is a number not in the domain of $f(x)$, trying to substitute leads to dividing by zero.

1. If trying to plug a into $f(x)$ leads to " $\frac{\text { non-zero" }}{0}$, then there is a vertical asymptote at a.

This means the one-sided limits can be ∞ or $-\infty$.
Example $\lim _{x \rightarrow 2} \frac{x+5}{x-2}$

Example $\lim _{x \rightarrow 0} \frac{x+1}{x^{2}}$
2. If trying to plug a into $f(x)$ leads to " $\frac{0}{0}$ ", the limit is indeterminate. There are a few strategies we can try:
(a) Factor and Cancel

Example $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
(b) Combine Fractions

Example $\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{1}{2}}{x-2}$
(c) Multiply by the Conjugate

Example $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$

Example Let's calculate a limit that can't be approximated numerically on your calculator!

Piecewise Functions

Not all functions are this nice! Piecewise functions require careful thinking about limit definitions:
$f(x)= \begin{cases}-\sqrt{9+x} & -9<x<-5 \\ 100 & x=-5 \\ x+3 & -5<x \leq 0 \\ x^{2} & 0<x\end{cases}$
Example 1. $\lim _{x \rightarrow-5}$

Example 2. $\lim _{x \rightarrow 0} f(x)$:

Example 3. $\lim _{x \rightarrow-3} f(x)$:

Don't forget $|x|=\left\{\begin{array}{ll}-x & x<0 \\ x & x \geq x\end{array}\right.$.
Absolute value functions require just as much caution as any other piecewise function.
Example $\lim _{x \rightarrow 0} g(x)$ where $g(x)=\frac{x}{|x|}$:

The Squeeze Theorem:

If $f(x) \leq g(x)$ for all x near a, then, even if $f(a)>g(a)$, we would expect that:

From this reasonable fact, we can deduce:

The Squeeze Theorem (a.k.a. Sandwich Theorem):

If \qquad for all x near a (not necessarily for $x=a$), then

The Squeeze Theorem is useful for finding limits of weird functions by "squeezing" them with more cooperative functions:

Example Let $f(x)$ be a mystery function. The only thing we know about f is $3-2 x-x^{2} \leq f(x) \leq-2 x+3$ for all $x \neq a$. Find $\lim _{x \rightarrow 0} f(x)$.

Example Find $\lim _{t \rightarrow 0} t^{2} \sin \left(\frac{1}{t}\right)$.

