## Goals:

- Define, compute, and draw secant and tangent lines.
- Interpret the slope of secant and tangent lines.

# Motivating Example:

(a) Write an equation for this line and identify the slope.



(b) If the x-values represent hours since you started hiking and the y-values represent the number of miles between you and your destination, what does the slope represent? What units should the slope be in?

(c) If the x-values represent the number of books a publisher sells and the y-values represent the publisher's revenue (total amount of money received), what does the slope represent? What units should the slope be in?

Background



Slope = m =

Point slope form of the line:

If s(t) is a function that represents \_\_\_\_\_\_, then the slope of the line between  $\left(a,s(a)\right)$  and  $\left(b,s(b)\right)$  represents \_\_\_\_\_\_.

# Average Velocity Example 1



| s  | s(t) |
|----|------|
| 0  | 200  |
| 10 | 500  |
| 15 | 1000 |
| 16 | 1200 |
| 20 | 2100 |
| 30 | 3200 |

Average velocity over [0, 30]:

Average velocity over [10, 20]:

Average velocity over [15, 16]:

Which of these is the closest estimate to the velocity of the object at t = 15?

Write an equation for (but do not compute) an even more accurate estimate of velocity at t = 15:

In general, to find the average slope of a function f(x) over the interval [a, a + h], compute the **difference quotient**:

# Average Velocity Ex. 2



Let t be time in seconds and s(t) be distance traveled in feet.

Average slope over [2, 4]:

A line through two points on a function is called a \_\_\_\_\_\_.

The slope of the secant line between (2,4) and (4,16) is

Average velocity over [2, 3]:

Average velocity over [2, 2.1]:

As the intervals get smaller, the secant lines get closer and closer to the tangent line at t = 2. The slope of the **tangent line** of f(t) at t = 2 is exactly equal to the velocity of the object at t = 2.

Let's find the slope of the tangent line at t=2 using the difference quotient. The average velocity between 2 and 2+h seconds is:

## Additional Examples