Goals:

- Define, compute, and draw secant and tangent lines.
- Interpret the slope of secant and tangent lines.

Motivating Example:

(a) Write an equation for this line and identify the slope.

(b) If the x-values represent hours since you started hiking and the y-values represent the number of miles between you and your destination, what does the slope represent? What units should the slope be in?
(c) If the x-values represent the number of books a publisher sells and the y-values represent the publisher's revenue (total amount of money received), what does the slope represent? What units should the slope be in?

Background

If $s(t)$ is a function that represents \qquad , then the slope of the line between $(a, s(a))$ and $(b, s(b))$ represents \qquad .

Average Velocity Example 1

Average velocity over $[0,30]$:

Average velocity over [10, 20]:

Average velocity over $[15,16]$:

Which of these is the closest estimate to the velocity of the object at $t=15$?

Write an equation for (but do not compute) an even more accurate estimate of velocity at $t=15$:

In general, to find the average slope of a function $f(x)$ over the interval $[a, a+h]$, compute the difference quotient:

Average Velocity Ex. 2

Let t be time in seconds and $s(t)$ be distance traveled in feet.
Average slope over [2,4]:
A line through two points on a function is called a \qquad .

The slope of the secant line between $(2,4)$ and $(4,16)$ is \qquad .

Average velocity over [2,3]:

Average velocity over [2, 2.1]:
As the intervals get smaller, the secant lines get closer and closer to the tangent line at $t=2$. The slope of the tangent line of $f(t)$ at $t=2$ is exactly equal to the velocity of the object at $t=2$.

Let's find the slope of the tangent line at $t=2$ using the difference quotient. The average velocity between 2 and $2+h$ seconds is:

Additional Examples

