In class, we defined an abelian category to be a category A in which the following conditions hold:

1. Finite products and finite coproducts exist, and the map

$$\prod_{i\in I} X_i \to \prod_{i\in I} X_i$$

is an isomorphism.

- 2. Finite limits and finite colimits exist.
- 3. Coimages and images coincide.

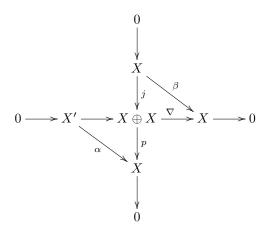
Show that this definition implies Grothendieck's using the following steps:

- 1. Show that the empty product is a final object and the empty coproduct is an initial object. Conclude that A has a zero object, denoted 0.
- 2. Show that kernels can be constructed as finite limits and cokernels can be constructed as finite colimits (both involving the zero object).
- 3. If $f, g: X \to Y$ are maps in A, define f + g as the composition:

$$X \xrightarrow{\Delta} X \oplus X \xrightarrow{\begin{pmatrix} f & 0 \\ 0 & g \end{pmatrix}} Y \oplus Y \xrightarrow{\nabla} Y$$

Construct the middle arrow using universal properties. (Δ is the diagonal, ∇ the sum.)

- 4. Show that the addition law f + g defined above maked Hom(X, Y) into a commutative monoid with unit the zero homomorphism $X \to 0 \to Y$.
- 5. Let $X' = \ker(\nabla : X \oplus X \to X)$. Let $p, q : X \oplus X \to X$ be the first projection. Prove that $X' \to X \oplus X \xrightarrow{p} X$ is an isomorphism. Define $-\operatorname{id}_X = q \circ p^{-1}$. Hint: construct a commutative diagram



where $j:X\to X\oplus X$ is 0 on the first factor and id_X on the second. First show $\beta=\mathrm{id}_X,$ then

6. Show that $\operatorname{Hom}(X, Y)$ is an abelian group (define $-f = f \circ (-\operatorname{id}_X)$).