- 1. Show that if X is a paracompact topological space, Y is a topological space, and $\{Z_i\}$ is a locally finite closed cover of X then a function $f: X \to Y$ is continuous if and only if $f|_{Z_i}$ is continuous for every *i*.
- 2. Prove that a paracompact, Hausdorff topological space is normal.
- 3. Suppose that X is paracompact and Hausdorff, that F is a soft sheaf on X, and that

$$0 \to F \to G \to H \to 0$$

is exact. Show that

$$0 \to F(X) \to G(X) \to H(X) \to 0$$

is also exact. (Hint: given $\alpha \in H(X)$, begin by finding a locally finite closed cover $X = \bigcup_{i \in I} Z_i$ such that $\alpha|_{Z_i}$ lifts to $G(Z_i)$ for every *i*. Then find a maximal subcollection $J \subset I$ with a lift of $\alpha|_{\bigcup_{i \in J} Z_i}$. Finally, show that $\bigcup_{i \in J} Z_i = X$.)

- 4. Let X be a C^{∞} manifold of dimension n. For each p, and each open U in X, let Ω^p be the sheaf of real-valued C^{∞} p-forms on U.
 - (a) Verify that Ω^p is a sheaf.
 - (b) Show that Ω^p is acyclic.
 - (c) Let $d: \Omega^p \to \Omega^{p+1}$ be the exterior derivative. Show that the complex

$$0 \to \underline{\mathbf{R}} \to \underline{C}^{\infty} \to \Omega^1 \to \Omega^2 \to \dots \to \Omega^n \to 0$$

is exact. You can make use the vanishing of de Rham cohomology on contractible manifolds here. Or you can construct a chain homotopy: when U is an open subset of \mathbf{R}^n with coordinates x_1, \ldots, x_n , let a denote antidifferentiation with respect to x_n . Define $s : \Omega^p(U) \to \Omega^{p-1}(U)$ by taking $s(fdx_{i_1} \wedge \cdots \wedge dx_{i_p})$ to be $a(f)dx_1 \wedge \cdots \wedge dx_{i_{p-1}}$ if $i_p = n$ and to be 0 if $i_p < n$.

(d) Deduce that sheaf cohomology of X with coefficients in $\underline{\mathbf{R}}$ coincides with de Rham cohomology of X.