- 1. Suppose F and G are sheaves on X. We call a morphism $\varphi: F \to G$ an injection, surjection, or bijection if every morphism of stalks $\varphi_x: F_x \to G_x$ is injective, surjective, or bijective, respectively. Prove the following statements:
 - (a) $\varphi: F \to G$ is a monomorphism if and only if it is an injection. (For φ to be a monomorphism means: if $\psi, \psi': H \to F$ are two morphisms of sheaves then $\psi = \psi'$ if and only if $\varphi \psi = \varphi \psi'$.)
 - (b) $\varphi: F \to G$ is an epimorphism if and only if it is a surjection. (For φ to be an epimorphism means: if $\psi, \psi': G \to H$ are two morphisms of sheaves then $\psi = \psi'$ if and only if $\psi \varphi = \psi' \varphi$.)
 - (c) $\varphi: F \to G$ is an isomorphism if and only if it is a bijection.
- 2. Complete the proof from class that the category of sheaves of abelian groups on a topological space X form an abelian category. (The main point is to show the existence of cokernels.)
- 3. (a) Show that arbitrary small direct sums of sheaves exist by sheafifying the presheaf direct sum.
 - (b) I claimed incorrectly in class that the presheaf direct sum of sheaves is always a sheaf. Give a counterexample.
 - (c) Show that arbitrary small products of sheaves are sheaves (no sheafification required).
 - (d) Show that $(\prod F_i)_x \neq \prod ((F_i)_x)$.
 - (e) Remark on which constructions behave well from the espace étalé point of view and which behave well for the functor point of view. (Hint: from the functor point of view, sheaves are characterized as respecting certain limits; from the espace étalé point of view, sheaves are characterized as colimits of certain objects.)
- 4. Complete the proof from class that the category of sheaves of abelian groups has enough injectives. (You need to show three things: existence of small direct sums, exactness of filtered colimits, and existence of a generator.)