- 1. Let C be an abelian category. A correspondence $f: X \dashrightarrow Y$ from X to Y in C is a subobject $f \subset X \oplus Y$. The composition of $f: X \dashrightarrow Y$ and $g: Y \dashrightarrow Z$ is the image of $f \times_Y g$ under the map $X \oplus Y \oplus Z \to X \oplus Z$. A correspondence is a map if the projection $f \subset X \oplus Y \to X$ is an isomorphism. The inverse $f^{-1} \subset Y \oplus X$ of f is the correspondence induced by the isomorphism $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}: X \oplus Y \simeq Y \oplus X$. For a subobject $Z \subset X$, we write f(X) for the image of $S \times_X f \to Y$.
 - (a) Show that if $f: X \dashrightarrow Y$ then there is a universal $g: X' \to X$ and a universal $h: Y \to Y'$ such that hfg is a morphism. Verify that $X' = f^{-1}(Y)$ and Y' = Y/f(0).
 - (b) Verify that, if $f: X \to Y$ is a morphism, then above construction produces $f^{-1}: \operatorname{im}(f) \to \operatorname{coim}(f)$.
 - (c) Show that $f \circ f^{-1} \circ f = f$ for any correspondence $f: X \dashrightarrow Y$.
- 2. Let $C_{\bullet,\bullet}$ be a double complex with differential $d=d_0+d_1$ where $d_0:C_{p,q}\to C_{p-1,q}$ and $d_1:C_{p,q}\to C_{p,q-1}$. Give $\operatorname{Tot}^{\Pi}(C_{\bullet,\bullet})$ and $\operatorname{Tot}^{\oplus}(C_{\bullet,\bullet})$ the filtration where

$$F_q \operatorname{Tot}^{\Pi}(C_{\bullet,\bullet})_n = \prod_{\substack{j \geq p \\ i+j=n}} C_{i,j} F_q \operatorname{Tot}^{\oplus}(C_{\bullet,\bullet})_n = \bigoplus_{\substack{j \geq p \\ i+j=n}} C_{i,j}$$

Verify the following:

$$\begin{split} \operatorname{gr}_q Z_{p+q}(\operatorname{Tot}^{\oplus} C_{\bullet,\bullet}) &= d_0^{-1}(0) \cap d_1^{-1} d_0 d_1^{-1}(0) \cap d_1^{-1} d_0 d_1^{-1} d_0 d_1^{-1}(0) \cap \cdots \\ \operatorname{gr}_q B_{p+q}(\operatorname{Tot}^{\oplus} C_{\bullet,\bullet}) &= d_0(C_{p-1,q}) + d_1 d_0^{-1}(0) + d_1 d_0^{-1} d_1 d_0^{-1}(0) + \cdots \\ \operatorname{gr}_q H_{p+q}(\operatorname{Tot}^{\oplus} C_{\bullet,\bullet}) &= \frac{d_0^{-1}(0) \cap d_1^{-1} d_0 d_1^{-1}(0) \cap d_1^{-1} d_0 d_1^{-1} d_0 d_1^{-1}(0) \cap \cdots}{d_0(C_{p-1,q}) + d_1 d_0^{-1}(0) + d_1 d_0^{-1} d_1 d_0^{-1}(0) + \cdots}. \end{split}$$

- 3. Let $C_{p,q}^0 = C_{p,q}$ with differential d_0 . Let $C_{p,q}^1 = H_{p,q}(C_{\bullet,\bullet}^1, d_0)$. Show that $C_{p,q}^1 = \frac{d_0^{-1}(0)}{d_0(C_{p-1,q})}$. Show that d_1 induces a differential $d_1: C_{p,q}^1 \to C_{p,q-1}^1$.
- 4. For each $r \geq 1$, set $d_{r+1} = d_r d_{r-1}^{-1} d_r$. Show that

$$d_r = (d_1 d_0^{-1})^{r-1} d_1$$

(as a correspondence) for all r.

- 5. Define $C_{p,q}^{r+1}=H_{p,q}(C_{\bullet,\bullet}^r,d_r)$, inductively. Verify that d_r is well-defined on $C_{p,q}^r$.
- 6. Conclude that the groups $C_{p,q}^r$ 'converge' to $\operatorname{gr}_q H_{p+q}(\operatorname{Tot} C_{\bullet,\bullet})$ as $r \to \infty$. Feel free to assume that, for each n, there are only finitely many (p,q) with p+q=n and $C_{p,q} \neq 0$.
- 7. Compute the Mayer–Vietoris spectral sequence for the open cover $\mathbf{CP}^2 = U_0 \cup U_1 \cup U_2$ where U_i is the image of the open subset of $(x_0, x_1, x_2) \in \mathbf{C}^3$ where $x_i \neq 0$.