1. Let C be an abelian category. A correspondence $f: X \rightarrow Y$ from X to Y in C is a subobject $f \subset X \oplus Y$. The composition of $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is the image of $f \times_{Y} g$ under the map $X \oplus Y \oplus Z \rightarrow X \oplus Z$. A correspondence is a map if the projection $f \subset X \oplus Y \rightarrow X$ is an isomorphism. The inverse $f^{-1} \subset Y \oplus X$ of f is the correspondence induced by the isomorphism $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right): X \oplus Y \simeq Y \oplus X$. For a subobject $Z \subset X$, we write $f(X)$ for the image of $S \times_{X} f \rightarrow Y$.
(a) Show that if $f: X \rightarrow Y$ then there is a universal $g: X^{\prime} \rightarrow X$ and a universal $h: Y \rightarrow Y^{\prime}$ such that $h f g$ is a morphism. Verify that $X^{\prime}=f^{-1}(Y)$ and $Y^{\prime}=Y / f(0)$.
(b) Verify that, if $f: X \rightarrow Y$ is a morphism, then above construction produces $f^{-1}: \operatorname{im}(f) \rightarrow \operatorname{coim}(f)$.
(c) Show that $f \circ f^{-1} \circ f=f$ for any correspondence $f: X \rightarrow Y$.
2. Let $C_{\bullet} \bullet$ be a double complex with differential $d=d_{0}+d_{1}$ where d_{0} : $C_{p, q} \rightarrow C_{p-1, q}$ and $d_{1}: C_{p, q} \rightarrow C_{p, q-1} . \operatorname{Give} \operatorname{Tot}^{\Pi}\left(C_{\bullet, \bullet}\right)$ and $\operatorname{Tot}^{\oplus}\left(C_{\bullet, \bullet}\right)$ the filtration where

$$
F_{q} \operatorname{Tot}^{\Pi}\left(C_{\bullet, \bullet}\right)_{n}=\prod_{\substack{j \geq p \\ i+j=n}} C_{i, j} F_{q} \operatorname{Tot}^{\oplus}\left(C_{\bullet \bullet \bullet}\right)_{n}=\bigoplus_{\substack{j \geq p \\ i+j=n}} C_{i, j}
$$

Verify the following:

$$
\left.\begin{array}{l}
\operatorname{gr}_{q} Z_{p+q}\left(\operatorname{Tot}^{\oplus} C_{\bullet, \bullet}\right)=d_{0}^{-1}(0) \cap d_{1}^{-1} d_{0} d_{1}^{-1}(0) \cap d_{1}^{-1} d_{0} d_{1}^{-1} d_{0} d_{1}^{-1}(0) \cap \cdots \\
\operatorname{gr}_{q} B_{p+q}\left(\operatorname{Tot}^{\oplus} C \bullet, \bullet\right.
\end{array}\right)=d_{0}\left(C_{p-1, q}\right)+d_{1} d_{0}^{-1}(0)+d_{1} d_{0}^{-1} d_{1} d_{0}^{-1}(0)+\cdots .
$$

3. Let $C_{p, q}^{0}=C_{p, q}$ with differential d_{0}. Let $C_{p, q}^{1}=H_{p, q}\left(C_{\bullet, \bullet}^{1}, d_{0}\right)$. Show that $C_{p, q}^{1}=\frac{d_{0}^{-1}(0)}{d_{0}\left(C_{p-1, q)}\right.}$. Show that d_{1} induces a differential $d_{1}: C_{p, q}^{1} \rightarrow C_{p, q-1}^{1}$.
4. For each $r \geq 1$, set $d_{r+1}=d_{r} d_{r-1}^{-1} d_{r}$. Show that

$$
d_{r}=\left(d_{1} d_{0}^{-1}\right)^{r-1} d_{1}
$$

(as a correspondence) for all r.
5. Define $C_{p, q}^{r+1}=H_{p, q}\left(C_{\bullet}^{r}, \bullet, d_{r}\right)$, inductively. Verify that d_{r} is well-defined on $C_{p, q}^{r}$.
6. Conclude that the groups $C_{p, q}^{r}$ 'converge' to $\operatorname{gr}_{q} H_{p+q}(\operatorname{Tot} C \bullet, \bullet)$ as $r \rightarrow \infty$. Feel free to assume that, for each n, there are only finitely many (p, q) with $p+q=n$ and $C_{p, q} \neq 0$.
7. Compute the Mayer-Vietoris spectral sequence for the open cover $\mathbf{C P}^{2}=$ $U_{0} \cup U_{1} \cup U_{2}$ where U_{i} is the image of the open subset of $\left(x_{0}, x_{1}, x_{2}\right) \in \mathbf{C}^{3}$ where $x_{i} \neq 0$.

