1. Let $A=\mathbf{C}[x, y]$ and let $B=A /(x, y) . \operatorname{Compute}_{\operatorname{Ext}}{ }^{n}(B, A)$ and $\operatorname{Ext}^{n}(B, B)$ for all $n$.
2. Let $A=\mathbf{C}[x, y] /(x y)$ and let $B=A /(x, y)$. Compute $\operatorname{Ext}^{n}(B, A)$ and $\operatorname{Ext}^{n}(B, B)$ for all $n$.
3. Let $A=\mathbf{C}[x] /\left(x^{2}\right)$ and let $B=\mathbf{C}[x] /(x)$. Compute $\operatorname{Ext}^{n}(B, A)$ and $\operatorname{Ext}^{n}(B, B)$ for all $n$.
4. Let $\hat{\mathbf{Q}}=\lim \mathbf{Q} / n \mathbf{Z}$. Prove that $\hat{\mathbf{Q}} \simeq \mathbf{R}$ :
(a) Show that $\hat{\mathbf{Q}}$ is divisible.
(b) Show that $\hat{\mathbf{Q}}$ is torsion-free.
(c) Conclude that $\hat{\mathbf{Q}}$ is a $\mathbf{Q}$-vector space.
(d) Show that $\hat{\mathbf{Q}}$ has the cardinality of $\mathbf{R}$.
(e) Conclude that $\hat{\mathbf{Q}}$ has a basis whose cardinality is the same as the cardinality of $\mathbf{R}$. (You may use the axiom of choice.)
(f) Conclude that $\hat{\mathbf{Q}} \simeq \mathbf{R}$.
5. Complete the verification that Yoneda extensions Y. $\operatorname{Ext}(X, Y)$ (Yoneda extensions) has the structure of an abelian group.
6. Complete the verification that $\operatorname{Hom}(X,-)$ and $Y \operatorname{Ext}(X,-)$ together form a truncated $\delta$-functor. Why is the sequence constructed in class exact?
