1. Show that an object P is projective if and only if $\operatorname{Hom}(P,-)$ is exact.
2. Show that P is projective if and only if every epimorphism $Q \rightarrow P$ is split.
3. Prove that the ideal $(2,1+\sqrt{-5}) \subset \mathbf{Z}[\sqrt{-5}]$ is projective. Can you show it is not free?
4. Prove that the ideal $(x, y) \subset \mathbf{C}[x, y] /\left(y^{2}-x^{3}-x\right)$ is projective. Can you show it is not free?
5. Let M be the $\mathbf{C}[x, y]$-module \mathbf{C}, on which x and y both act by 0 . Compute $\operatorname{Tor}_{n}(M, M)$ for all integers n.
6. Prove that if A and B are abelian groups, $\operatorname{Tor}_{n}(A, B)=0$ for all $n \neq 0,1$.
7. Do exercise 2.2.3 from Weibel.
8. Exercise 2.2.1 from Weibel is interesting but not essential.
