- 1. Complete the verification of the universal property of the cone from class. Show, in other words, that if $f: K_{\bullet} \to L_{\bullet}$ is a morphism of chain complexes, $\operatorname{cone}(f)$ is the universal example of a chain complex equipped with a map $g: L_{\bullet} \to \operatorname{cone}(f)$ and a *specified* chain homotopy $s: gf \simeq 0$.
- 2. Exercise 1.5.3 is very similar in spirit to the last one, except it is about the mapping cylinder.
- 3. Complete the verification from class that, for any $f: K_{\bullet} \to L_{\bullet}$, there is a canonical chain homotopy equivalence cone(cone(f)) $\simeq K_{\bullet}[-1]$.
- 4. Check that the map $H_i(K_{\bullet}) \to H_i(L_{\bullet})$ induced from the short exact sequence

$$0 \to L_{\bullet} \to \operatorname{cone}(f) \to K_{\bullet}[-1] \to 0$$

is the same as the one induced from f.

5. This problem requires some definitions:

Definition 1. A morphism $f : A \to B$ in a category C is called a *monomorphism* if $f \circ (-) : \operatorname{Hom}(Z, A) \to \operatorname{Hom}(Z, B)$ is injective for all $Z \in C$.

A split monormorphism is a map $f : A \to B$ such that there exists a map $g : B \to A$ such that $gf = id_A$.

- (a) Verify that split monomorphisms are monomorphisms.
- (b) Check that if $f : A \to B$ is a monomorphism in an abelian category then $B \simeq A \oplus B/A$.
- (c) Show that for any $f : A \to B$ in an abelian category, the map $\ker(f) \to A$ is a monomorphism.
- (d) Suppose that $f: K_{\bullet} \to L_{\bullet}$ is a monomorphism in the chain homotopy category and that the chain homotopy category is abelian. Show that the map $\operatorname{cone}(f)[1] \to K_{\bullet}$ must be chain homotopic to zero.
- (e) Show that a chain homotopy between the map $\operatorname{cone}(f)[1] \to K_{\bullet}$ and zero gives a splitting of the map $K_{\bullet} \to L_{\bullet}$.
- (f) Conclude that every monomorphism in the chain homotopy category is a split monomorphism.
- (g) Conclude that if a map $f : K_{\bullet} \to L_{\bullet}$ has a kernel in the chain homotopy category then ker(f) is a direct summand of K_{\bullet} .
- (h) Show that the multiplication-by-2 map $[2] : \mathbb{Z}[0] \to \mathbb{Z}[0]$ does not have a kernel in the chain homotopy category. (Recall that we proved in class that the kernel is not 0.)