1. In class we considered a complex

$$
K_{m}^{(n)}=\mathbf{Z}^{\binom{n+2}{m+1}}
$$

$K_{m}^{(n)}$ has a basis consisting of the $(m+1)$-element subsets $\left\{i_{0}<\cdots<i_{m}\right\}$ of $\{0, \ldots, n+1\}$. The boundary map $d: K_{m}^{(n)} \rightarrow K_{m-1}^{(n)}$ is given by the formula

$$
d\left\{i_{0}<\cdots<i_{m}\right\}=\sum(-1)^{j}\left\{i_{0}<\cdots<\hat{\imath}_{j}<\cdots<i_{m}\right\} .
$$

We constructed several exact sequences:

$$
\begin{align*}
0 \rightarrow \mathbf{Z}[1] & \rightarrow K_{\bullet}^{(n)} \rightarrow C_{\bullet}\left(\Delta^{n+1}\right) \rightarrow 0 \tag{1}\\
0 \rightarrow C_{\bullet}\left(\partial \Delta^{n+1}\right) & \rightarrow C_{\bullet}\left(\Delta^{n+1}\right) \rightarrow \mathbf{Z}[-(n+1)] \rightarrow 0 \tag{2}\\
0 \rightarrow K_{\bullet}^{(n-1)} & \rightarrow K_{\bullet}^{(n)} \rightarrow K_{\bullet}^{(n-1)}[-1] \rightarrow 0 \tag{3}
\end{align*}
$$

(a) Compute the homology of $K_{\bullet}^{(-1)}$.
(b) Use the long exact sequence associated with (3) and induction to compute the homology of $K_{\bullet}^{(n)}$ for every n.
(c) Use the long exact sequence associated with (2) to compute the homology of $C \bullet\left(\Delta^{(n+1)}\right)$.
(d) Use the long exact sequence associated with (1) to compute the homology of $C \bullet\left(\partial \Delta^{(n+1)}\right)$. Be careful with the case $n=0$.
2. Prove that the connecting morphism in the snake lemma is natural with respect to the diagram and is uniquely determined by this naturality. (Hint: if you look at the proof from class carefully, you'll see that we constructed the connecting homomorphism using its naturality.)

