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November 13, 2012

Week 3: Induced topologies

3.1 The (generalized) quotient topology

Let f : X → Y be a function and suppose that X is a topological space. We
may induce a topology on Y by defining U ⊂ Y to be open when f−1(U) ⊂ X
is open. When f is surjective, this is called the quotient topology.

Exercise 1. (a) Show that the topology on Y is the finest one in which f is
continuous.

(b) Show that if Z is a topological space and g : Y → Z is a function then gf
is continuous if and only if g is.

More generally, if we had a collection of functions fi : Xi → Y then we can
induce a topology on Y in which U ⊂ Y is called open if f−1i (U) is open for all
i. Then the preceding exercise has an analogue:

Exercise 2. (a) Show that the topology on Y is the finest in which fi is
continuous for every i.

(b) Show that if Z is a topological space and g : Y → Z is a function then g
is continuous if and only if gfi is continuous for every i.

3.2 The (generalized) subspace topology

Let f : X → Y be a function and suppose that Y comes with a topology. We
can induce a topology on X by declaring U ⊂ X is open if U = f−1(U) for
some open U ⊂ Y . When f is injective, this is called the subspace topology.

Exercise 3. (a) Show that the topology on X is the coarsest in which f is
continuous.

(b) Show that if W is a topological space and h : W → X is a funciton then
fh is continuous if and only if h is.

As with the quotient topology, we have a generalization: Suppose that fi :
X → Yi are functions and that each Yi is a topological space. We give the X
the coarsest topology so that each of the functions fi is continuous.
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Exercise 4. Show that the collection of all subsets f−1i (U) where U ⊂ X is
open form a subbasis for the topology of X. In effect, the subsets

f−1i1 (U1) ∩ · · · ∩ f−1ik (Uk)

where each Uj ⊂ Xij is open, form a basis for the topology of X.

3.3 The product topology

Let I be an indexing set and suppose that for each i ∈ I we have a topological
space Xi. Let X be the set

∏
i∈I Xi, equipped with the coarsest topology that

makes all of the projection maps pi : X → Xi continuous. By Exercise 4, a
subset of U ⊂ X is open if and only if there is a finite collection i1, . . . , ik ∈ I
and open subsets Uj ⊂ Xij such that

U = p−11 (U1) ∩ · · · ∩ p−1k (Uk).

Exercise 5. Note that if J is a subset of I there is a projection pJ :
∏
i∈I Xi →∏

i∈J Xi. Verify that U ⊂ X is open if and only if there is a finite subset J ⊂ I
and an open subset V ⊂

∏
i∈J Xi with U = p−1J (V ).

3.4 Example: S1 and R/Z

Give R/Z the quotient topology from q : R → R/Z and give S1 the subspace
topology from i : S1 → R2. Consider the function f : R→ R2 defined by

f(t) =
(
cos(2πt), sin(2πt)

)
.

Note that f is well defined on R/Z and takes values in S1; that is, there is a
function g : R/Z→ S1 such that igq = f .

Lemma 3.1. g is continuous.

Proof. By the universal property of the quotient topology, f is continuous if
and only if gq is continuous; by the universal property of the subspace topology,
igq is continuous if and only if gq is continuous.

It is well-known that g is a bijection, so we omit a proof of this fact.

Lemma 3.2. f is open.

Proof. It is sufficient to show that f(U) is open for all U in a basis for R. We take
for this basis the collection of intervals (a, b) such that k π2 < a < b < (k + 2)π2
and k ∈ Z. Then if k ≡ 0 (mod 4),

f((a, b)) = {(x, y) ∈ S1
∣∣cos(2πb) < x < cos(2πa) and y > 0}

is the intersection of the open subset (cos(2πb), cos(2πa)) × (0,∞) ⊂ R2 with
S1. Similarly, if k = 1 (mod 4),

f((a, b)) = {(x, y) ∈ S1
∣∣sin(2πb) < x < sin(2πa) and x < 0}

is the intersection of (−∞, 0)×(sin(2πb), sin(2πa)) ⊂ R2 with S1 and is therefore
open in S1. Similar remarks apply for k ≡ 2, 3 (mod 4).
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Lemma 3.3. g is open.

Proof. Let U be an open subset of R/Z. Then g(U) = g(q(q−1(U))) = f(q−1(U)).
Since q is continuous, q−1(U) is open, and since f is open, g(U) = f(q−1(U)) is
open.

Proposition 3.4. g is a homeomorphism.

Proof. It is well-known that g is a bijection; since it is also open it is a homeo-
morphism.

Week 4: The product topology and Tychonoff’s
theorem

4.1 The axioms of choice

The axiom of choice has many equivalent formulations. In my opinion, the most
elegant is the first one below. Before stating it, let us recall that a section of
a function f : S → T is a right inverse of f : a function g : T → S such that
fg = idT . Notice that a section need not be an inverse of f because we very
well may not have gf = idS .

Axiom (The axiom of choice). Every surjection has a section.

Exercise 6. Show that the axiom of choice fails in all of the following categories:

(a) topological spaces (i.e., there exists a continuous surjection without a con-
tinuous section),

(b) groups (there exists a surjective group homomorphism without a homo-
morphic section),

(c) abelian groups,

(d) rings,

(e) commutative rings,

(f) the category whose objects are pairs (S, ϕ) where S is a set and ϕ is a
bijection from S to itself. (Hint: Let S be the set Z and ϕ(n) = n + 1.
Let S′ be a point (and ϕ′ the only bijection from S′ to itself). There is a
unique map (S, ϕ)→ (S′, ϕ′) but this does not have a section.)

Here are several other formulations of the axiom of choice:

Axiom (The axiom of choice). If Si, i ∈ I is a family of non-empty sets then∏
i∈I Si 6= ∅.

Exercise 7. Prove that the two formulations of the axiom of choice given above
are equivalent.
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Lemma 4.1 (Zorn’s lemma). If S is a partially ordered set in which each totally
ordered subset has an upper bound then S contains maximal elements.

Proof. Suppose not. Then if T is a totally ordered subset of S there is an upper
bound for T that is not in T . Let f be a function that assigns to each totally
ordered subset T of S an upper bound for T not in T . Such a function exists
by the axiom of choice.

Define a transfinite sequence of totally ordered subsets of S as follows:

(i) let T0 = ∅,

(ii) if n = m+ 1, let Tn = Tm ∪ {f(Tm)},

(iii) if n is a limit ordinal, let Tn =
⋃
m<n Tm.

The number of Tn will eventually exceed the cardinality of the set of all subsets
of S, but there just aren’t that many totally ordered subsets of S. This is a
contradiction, so there must be some totally ordered subset T of S for which
every upper bound for T is contained in T . This upper bound is therefore a
maximal element of S (if it weren’t maximal, there would be an upper bound
for T not contained in T ).

4.2 Ultrafilters

Let X be a set. A filter in X is a generalization of a subset of X.

Definition 4.2. A filter is a collection F of subsets of X satisfying the following
properties:

FIL1 ∅ 6∈ F ,

FIL2 if U ⊂ V ⊂ X and U ∈ F then V ∈ F , and

FIL3 if U, V ∈ F then there is a W ∈ F with W ⊂ U ∩ V .

If in addition F satisfies

FIL4 F is maximal with respect to properties FIL1, FIL2, and FIL3

then F is called an ultrafilter.

We have used a slightly non-standard axiomatization of the notion of an
ultrafilter so that generalizations will be straightforward.

Exercise 8. (a) Let F be a filter of X. Show that if U, V ∈ F then U∩V ∈ F .

(b) Let F be an ultrafilter of X and A ⊂ X a subset. Show that A ∈ F or
(X rA) ∈ F .

Proposition 4.3. Every filter of X is contained in an ultrafilter.
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Proof. Let F be a filter and let C be the collection of all filters of X contain-
ing F , partially ordered by inclusion. An ascending union of filters is a filter,
so C contains maximal elements. Any such maximal element is an ultrafilter
containing F .

Proposition 4.4. Let F be a collection of subsets of a set X. Then F is
contained in a filter and only if F satisfies the following property: If U1, . . . , Un ∈
F is a finite collection of elements of F then

⋂
i Ui 6= ∅.

Proof. Let F ′ be the collection of all finite intersections of elements of F and let
F ′′ be the collection of all V ⊂ X that contain some element of F ′. We verify
that F ′′ is a filter.

(i) If ∅ ∈ F ′′ then ∅ ⊃
⋂
i Ui for some finite collection of Ui ∈ F , but this is

contrary to our assumption on F .

(ii) If U ⊂ V ⊂ X and U ∈ F ′′ then U contains W for some W ∈ F ′.
Therefore V also contains W so V ∈ F ′′.

(iii) If U, V ∈ F ′′ then U contains U ′ for some U ′ ∈ F ′ and V contains V ′ for
some V ′ ∈ F ′. Therefore U ∩ V contains U ′ ∩ V ′, which is in F ′ because
F ′ is closed under finite intersections (by definition).

Corollary 4.5. A filter is contained in an ultrafilter if and only if it satisfies
the hypothesis of Proposition 4.4.

Exercise 9. Let X be a set.

(a) Let S be a subset of X. Define FS = {S′ ⊂ X
∣∣S′ ⊃ S}. Show that F is a

filter.

(b) Let x be a point of X. Show that F{x} is an ultrafilter.

Exercise 10. Show that an arbitrary intersection of filters is a filter.

4.2.1 Functoriality

Let f : X → Y be a function. Let F be an ultrafilter of X. Define

f(F ) = {S ⊂ Y
∣∣f−1(S) ∈ F}.

Exercise 11. Show that if F is a filter, so is f(F ), and that if F is an ultrafilter,
so is f(F ).

Now suppose that f : X → Y is a function and F is a filter of Y . Define

f−1(F ) = {S ⊂ X
∣∣S ⊃ f−1(T ) for some T ∈ F}.

Exercise 12. Show that if F is a filter then f−1(F ) is a filter.
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4.2.2 Convergence, separation and compactness

Let X be a topological space. An ultrafilter F of X is said to converge to x ∈ X
if, for every open U ⊂ X with x ∈ U , we have U ∈ F .

Proposition 4.6. A topological space X is Hausdorff if and only if each ultra-
filter has at most one limit.

Proof. Suppose that X is Hausdorff and F is an ultrafilter in X with limits x
and y. Then for all open neighborhoods x ∈ U and y ∈ V of x and y, we have
U, V ∈ F . Therefore U ∩ V ∈ F so U ∩ V 6= ∅. That is, it is impossible to
find open neighborhoods U and V of x and y such that U ∩ V = ∅. Since X is
Hausdorff, this means x = y.

Suppose now that each ultrafilter has at most one limit. Let x and y be
points of X such that every neighborhood of x meets every neighborhood of
y; let E be the collection of all subsets of X that are an open neighborhood
of either x or y. Then by Corollary 4.5, E is contained in an ultrafilter. But
any ultrafilter containing E will converge to both x and to y. Therefore x = y.
Thus if x and y are distinct there must be open neighborhoods of x and y that
do not meet; that is, X is Hausdorff.

Proposition 4.7. A topological space X is compact if and only if each ultra-
filter in X has at least one limit.

Proof. Let X be a compact topological space and F an ultrafilter. If F has no
limit then for every x there is an open subset Ux ⊂ X with Ux 6∈ F . Since F is
an ultrafilter, this means that Zx = X rUx must be in F . Since X is compact,
there is a finite subset x1, . . . , xn ∈ X such that the Uxi cover X. Therefore,⋂n
i=1 Zxi is empty. But

⋂n
i=1 Zxi is in F (it is a finite intersection of elements

of F ). Therefore ∅ ∈ F , so F could not have been a filter.
Conversely, suppose that every ultrafilter has a limit and X =

⋃
i∈I Ui is

a cover with no finite subcover. Let Zi = X r Ui and let E be the collection
of all Zi. Note that finite intersections of the Zi are non-empty because if⋂n
j=1 Zij = ∅ we would have

⋃n
j=1 Uij = X. Thus, E is contained in some

ultrafilter F (by Corollary 4.5). But by assumption F has a limit x. This means
that every open neighborhood of x lies inside F , including some whichever Ui
contain x (there must be at least one since x ∈

⋃
i Ui). Therefore both Ui and

Zi are in F for some i, which means that ∅ = Ui ∩ Zi ∈ F , contradictory to F
being a filter.

4.3 Tychonoff’s theorem

Let I be a set and suppose that for each i ∈ I we have a topological space Xi.
Let X =

∏
Xi and let pi : X → Xi be the projections.

Exercise 13. Verify that if F is an ultrafilter of X then F converges to x ∈ X
if and only if pi(F ) converges to pi(x) for all i.
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Theorem 4.8 (Tychonoff). If Xi is compact for every i then
∏
i∈I Xi is com-

pact.

Proof (Cartan, Bourbaki). Let X =
∏
Xi and let pi : X → Xi be the pro-

jections. We would like to show that every ultrafilter of X converges to some
x ∈ X. But if F is an ultrafilter, the set of limits of F is

∏
i∈I Si where Si is

the set of limits of pi(F ): indeed, by the exercise, x ∈ X is a limit of F if and
only if pi(x) is a limit of pi(F ) for all i. Since each Xi is compact, it follows
that Si 6= ∅ for all i. Therefore the axiom of choice implies

∏
i∈I Si 6= ∅.

Week 5: Function spaces

5.1 Topologies on the set of continuous functions between
two topological spaces

Definition 5.1. Let X and Y be topological spaces and let Cont(Y,X) be the
set of continuous functions from Y to X. The compact-open topology on
Cont(Y,X) is the coarsest topology in which the sets

S(C,U) = {f : Y → X
∣∣f continuous and f(C) ⊂ U}

are open for every C ⊂ Y compact and U ⊂ X open.

Definition 5.2. Let X be a metric space and Y a topological space. The
compact convergence topology is the coarsest topology in which the sets

BC(f, ε) = {g : Y → X
∣∣g ∈ Cont(Y,X) and dC(f, g) < ε}

dC(f, g) = sup{d(f(y), g(y))
∣∣y ∈ C}

are open.

The following notation is convenient: if X is a metric space and Z ⊂ X is a
subset, let

B(C, ε) = {x ∈ X
∣∣d(x, f(y)) < ε for some y ∈ C}.

Lemma 5.3. Let Z be a compact subset of a metric space X and suppose that
Z ⊂ U for some open U ⊂ X. Then B(Z, ε) ⊂ U for some ε > 0.

Proof. For each x ∈ Z there is an ε(x) such that B(x, ε(x)) ⊂ U by definition of

the metric topology. Then the balls B(x, ε(x)2 ) cover Z so finitely many of them

suffice—say x1, . . . , xn. If y ∈ Z then d(y, xi) <
ε
2 for some i, so y ∈ B(xi,

ε(xi)
2 )

for some i.
Let ε = 1

2 min {ε(xi)}. Then if y ∈ Z and z ∈ B(Z, ε) then d(x, y) < ε.

We can find xi such that d(y, xi) <
ε(xi)
2 because the B(xi, ε(xi)/2) cover Z.

Therefore

d(z, xi) <
ε

2
+
ε(xi)

2
≤ ε(xi)

so z ∈ B(xi, ε(xi)) ⊂ U . Therefore B(Z, ε) ⊂
⋃n
i=1B(xi, ε(xi)) ⊂ U .
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Proposition 5.4. If Y is a topological space and X is a metric space, the
compact convergence topology and the compact-open topology on Cont(Y,X)
coincide.

Proof. First we show that if C ⊂ Y compact and U ⊂ X open then S(C,U) is
open in the compact convergence topology. We show that for any f ∈ S(C,U)
there is an ε > 0 such that BC(f, ε) ⊂ S(C,U). By the lemma, we can find
ε > 0 such that B(f(C), ε) ⊂ U . But then if g ∈ BC(f, ε) then d(g(y), f(y)) < ε
for all y ∈ C so g(y) ∈ B(f(C), ε) ⊂ U for all y ∈ C. That is g ∈ S(C,U).

Now we show that BC(f, ε) is open in the compact open topology for all
continuous f : Y → X, all ε > 0, and all compact C ⊂ Y . It will be enough to
demonstrate that there is a W ⊂ Cont(Y,X) that is open in the compact open
topology and satisfies f ∈W ⊂ BC(f, ε).

Cover f(C) by balls Vi = B(xi,
ε
3 ), each of diameter ε

3 . Let Ui = B(xi,
ε
2 ).

Since f(C) is compact, only finitely many of the Vi—say V1, . . . , Vn—suffice to
cover f(C). Let

W =

n⋃
i=1

S(f−1(V i) ∩ C,Ui) ⊂ Cont(Y,X).

Note that f ∈ W because f(f−1(V i) ∩ C) ⊂ Vi ⊂ Ui by definition. Note also
that f−1(V i) ∩ C is closed in C, hence compact, so S(f−1(V i) ∩ C,Ui) is open
in the compact open topology for each i. It follows therefore that W is the
intersection of open subsets in the compact open topology, hence is open in the
compact open topology.

If g ∈ W then g(Vi) ⊂ Ui for all i. Therefore, if y ∈ Vi, both f(y) and g(y)
will be in Ui. It follows that

d(f(y), g(y)) ≤ d(f(y), xi) + d(xi, g(y)) <
ε

2
+
ε

2
= ε.

Since every y ∈ C is contained in f−1(Vi) for some i, this means that d(f(y), g(y)) <
ε for all y ∈ C. Therefore W ⊂ BC(f, ε).

5.2 The universal property of the mapping space

Theorem 5.5. Let X, Y , and Z be topological spaces. If Y has a basis of
compact subsets then

Cont(Z,Cont(Y,X)) = Cont(Z × Y,X)

when Cont(Y,X) is given the compact-open topology.

First, note that there is a natural identification

Func(Z,Func(Y,X)) = Func(Z × Y,X).

If g : Z × Y → X is a function, we get a function f : Z → Func(Y,X) by
defining f(z)(y) = g(z, y). Likewise, if f : Z → Func(Y,X) is given, we can
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take g(z, y) = f(z)(y). These are obviously inverse constructions. We will verify
that g is continuous if and only if the corresponding function f takes values in
Cont(Y,X) and is continuous.

The proof has two parts, which we state as two lemmas:

Lemma 5.6. Let X, Y , and Z be topological spaces. If g : Z × Y → X is
continuous then f takes values in Cont(X,Y ) and f is continuous.

Proof. If g is continuous then for each z ∈ Z the function f(z) : Y → X is
continuous (because the composition Y ∼= {z}×Y → Z×Y → X is continuous).
Therefore f(z) ∈ Cont(Y,X). We check that f is continuous.

Suppose f(z) ∈ S(C,U) for some C ⊂ Y compact and U ⊂ X open. Then
since g is continuous, g−1(U) ⊂ Z × Y is continuous. Therefore for each y ∈ C
there is an open Vy ⊂ Z containing z and Wy ⊂ Y containing y such that
Vy×Wy ⊂ g−1(U). The Wy cover C and C is compact so C is already contained
in
⋃n
i=1Wyi . Take V =

⋂n
i=1 Vyi . Then z ∈ V and V is open. Furthermore,

V ⊂ f−1S(C,U), for if z′ ∈ V then g(z′,Wyi) ⊂ U for all yi so in particular
g(z′, C) ⊂ U , i.e., z′ ∈ S(C,U). Therefore f−1S(C,U) is open in Z × Y . This
proves f is continuous.

Lemma 5.7. Suppose Y has a neighborhood basis of compact subsets (that is,
every open neighborhood of any y ∈ Y contains a compact neighborhood of y).1

If f is continuous with values in Cont(Y,X) then g is continuous.

Proof. Suppose that U ⊂ X is open and g(z, y) ∈ U . Since f(z) is contin-
uous, the subset f(z)−1(U) ⊂ Y is open (and contains y). Because Y has
a neighborhood basis of compact subsets, we can find a compact neighbor-
hood V of y contained in f(z)−1(U). Then S(V,U) is an open subset of
Cont(Y,X) so f−1(S(V,U)) ⊂ Z is open (and notice that it contains z be-
cause g(z, V ) ⊂ U). Let W ⊂ V be an open neighborhood of y. Then for any
(z′, y′) ∈ f−1S(V,U)×W we have

g(z′, y′) = f(z′)(y′) ∈ S(V,U)(W ) ⊂ S(V,U)(V ) ⊂ U.

That is f−1S(V,U)×W is an open neighborhood of (z, y) that is contained in
g−1(U). Since we can find such a neighborhood for any (z, y), it follows that
g−1(U) is open in Z × Y , which means that g is continuous.

Together, the two lemmas prove the theorem.

1Perhaps it is appropriate here to recall the definition of a neighborhood. A subset V of Y
containing y is said to be a neighborhood of y if there is an open U ⊂ Y such that y ∈ U ⊂ V .
Note that this is not the same as the definition in [Mun], where neighborhoods are assumed
to be open.
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Week 6: Urysohn’s Lemma

Week 7: Homotopy and the fundamental group

Week 8: Covering spaces

Exercise 14. LetB be a topological space and letX be the subset of Cont(I,B)×
Cont(I,B) consisting of those pairs (f, g) such that f(1) = g(0). The map
µ : X → Cont(I,B) defined by

µ(f, g)(t) =

{
f(2t) t ≤ 1

2

g(2t− 1) t ≥ 1
2

is continuous.

Exercise 15. Let p : (E, e) → (B, b) be a covering space. Show that the
induced map Cont((I, 0), (E, e))→ Ω(B, b) is a homeomorphism.

Proposition 8.1. Suppose that B is locally contractible. Then for any base-
point b ∈ B the map Ω(B, b)→ π1(B, b) is continuous.

Proof. We have to show that for γ ∈ π1(B, b), the set of β ∈ Ω(B, b) that are
homotopic to γ is open. Cover B by contractible open sets U . Since γ : I → B
is continuous and I is compact, we can find a sequence of 0 = t0 < t1 < · · · <
tn = 1 such that for each i, we have γ([ti−1, ti]) ⊂ Ui for some contractible
Ui ⊂ B. For each i, let Vi be a contractible neighborhood of γ(ti) in Ui ∩Ui+1.
Consider the open set

W = S([t0, t1], U1) ∩ S([t1, t2], U2) ∩ · · · ∩ S([tn−1, tn], Un)

∩ S({t1}, V1) ∩ · · · ∩ S({tn}, Vn) ∩ Ω(B, b) ⊂ Ω(B, b).

Suppose β ∈ W . We will show that β ' γ. We construct the homotopy
H : I × I → B as follows: first, define

H(0, t) = β(t) for all t ∈ [0, 1],

H(1, t) = γ(t) for all t ∈ [0, 1],

H(s, 0) = H(s, 1) = b for all s ∈ [0, 1].

Second, for each ti, choose a path hi from β(ti) to γ(ti) inside of Vi (which
exists because Vi is contractible). Let H(s, ti) = hi(s). Now, for each i we
have defined H on the boundary of [0, 1]× [ti−1, ti] to take values inside of Ui.
Since Ui is contractible, it is possible to extend this map to a continuous map
Hi : [0, 1]× [ti−1, ti]→ Ui. These maps all agree where they overlap, so we get
a continuous map H : I × I → B yielding a homotopy between β and γ.

Exercise 16. Show that in the proposition above, it would have been enough
to assume that B be locally path connected and semilocally simply con-
nected.
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Recall that Ω(B, b) = Cont((S1, ∗), (B, b)) is the based loop space of (B, b).
This is not quite a group, but is very close: if f, g ∈ Ω(B, b) we can define

f · g(t) =

{
f(2t) t ≤ 1

2

g(2t− 1) t ≥ 1
2

f−1(t) = f(1− t)

Let ∗ denote the constant loop S1 → B with value b. A continuous right
action of Ω(B, b) on a set S is a continuous function S×Ω(B, b)→ S : (x, f) 7→
x.f such that

(a) x.∗ = x for all x ∈ S, and

(b) x.(fg) = (x.f).g for all f, g ∈ Ω(B, b).

Observe that giving an action of Ω(B, b) on S induces an action of π1(B, b)
on S. Does the converse hold? Does every π1(B, b)-action on S induce an
Ω(B, b)-action on S?

Theorem 8.2. Suppose that (B, b) is a path connected, locally contractible
space and we are given a continuous right action of Ω(B, b) on a set S. Then
there is a covering space p : E → B and a Ω(B, b)-equivariant bijection between
p−1(b) and S.

Proof. Assume that we are given a right action of Ω(B, b) on a set S. We will
construct a covering space p : E → B with fiber S.

Let P (B, b) = Cont((I, 0), (B, b)) be the based path space of B. Define an
equivalence relation on S × P (B, b): say that (x, f) ∼ (y, g) if y = x.fg−1.
Let E be the quotient of P (B, b) × S by this equivalence relation. Give E the
quotient topology.

We have a function P (B, b)× S → B sending (x, f) to f(1). This is a well-
defined function on equivalence classes, so it induces a function p : E → B,
which must be continuous by definition of the quotient topology. We check that
this is a covering space.

We show that p−1(U) ∼= U × S whenever U is a contractible subset of B.
Since B is locally contractible, B has a cover by contractible subsets, so this
will show that E is a covering space of B.

We need to construct a continuous function ϕ : p−1(U) → S. We cannot
simply use the function ϕ(x, f) = x because this is not well-defined on equiva-
lence classes. Pick a point c ∈ U and a path f from b to 1. If (x, g) ∈ p−1(U)
then g(1) ∈ U . Choose a path h from g(1) to f(1) (which exists because U is
contractible). Then gh and f have the same endpoint so ghf−1 is a loop in B
based at b. Define ϕ(x, g) = x.ghf−1.

We have to check this is well-defined: suppose that (x, g) ∼ (x′, g′); let h′

be a path from g′(1) to f(1). Then g(1) = g′(1) (because (x, g) ∼ (x′, g′))

and h′ is homotopic to h (because U is contractible). We have x′ = x.gg′
−1

.
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Noting that gg′
−1 ' ghh′

−1
g′−1 = (gh)(g′h′)−1 we notice that this means

x′ = x.gh.(g′h′)−1. Therefore

ϕ(x′, g′) = x′.g′h′f−1 = x.gh.(g′h′)−1.g′h′.f−1 = x.ghf−1 = ϕ(x, g).

This shows that ϕ is well-defined. To see that (ϕ, p) : p−1(U) → S × U is
surjective, pick (x, d) ∈ S × U . Choose a path h from c = f(1) to d. Then

ϕ(x, fh) = x.fh.h−1.f−1 = x

so (x, d) = (ϕ(x, fh), p(x, fh)) .
To see that (ϕ, p) is injective, suppose that ϕ(x, g) = ϕ(x′, g′). Then g(1) =

g′(1) and if h is a path from this point to f(1) then x.gh.f−1 = x′.g′h.f−1.

Therefore x′ = x.gh.f−1.f.(g′h)−1 = x.gg′
−1

so (x, g) ∼ (x′, g′). It follows that
(ϕ, p) is a bijection.

Now let’s check that ϕ is continuous. Choose a homotopy H between id :
U → U and the constant map with value c. This is a continuous function
I×U → U whose value on (0, d) is d and whose value on (1, d) is c for all d ∈ U .
We may also regard this as a continuous mapH : U → Cont(I, U). Now consider
the function ψ : P (B, b, U) → Ω(B, b) defined by ψ(g) = g ·H(g(1)) · f−1. We
have

ϕ(x, g) = x.ψ(g)

and ψ is continuous by Exercise 14. Therefore the map

ϕ : S × P (B, b, U)→ S × Ω(B, b)→ S

is continuous.
Finally, we also have to check that the map (ϕ, p) : p−1(U) → S × U

constructed above has a continuous inverse. Let H be as above, and define
ξ : S × U → p−1(U) as follows:

ξ(x, d) = (x, f.H(d)−1).

One must check that ξ actually is continuous: ξ is the composition of

S × U → S × Cont((I, 0, 1), (B, b, c))× Cont((I, 0, 1), (U, c, U))

→ S × Cont((I, 0, 1), (B, b, U))→ S × P (B, b)→ E

and all of these maps are continuous (the second one by Exercise 14). We also
have to check that (ϕ, p) and ξ are inverses:

ψ(ξ(x, d)) = ψ(x, f.H(d)−1) = (x.f.H(d)−1.H(d).f−1, d) = (x, d)

ξ(ψ(x, g)) = ξ(x.g.H(g(1)).f−1, g(1)) = (x.g.H(g(1)).f−1, f.H(g(1))−1).

I claim that this last term is equivalent to (x, g). Indeed, g(1) is the endpoint
of f.H(g(1))−1 and we have

x.g.(f.H(g(1))−1)−1 = x.g.H(g(1)).f−1

12



which is the definition of what it means for the point (x, g) to be equivalent to
the point (x.g.H(g(1)).f−1, f.H(g(1))−1).

This proves that p : E → B is a covering space. To finish the proof we have
to check that we’ve gotten the right action on p−1(b). Recall that the action of
Ω(B, b) on p−1(b) is defined by x.γ = γ̃(1) where γ̃ : (I, 0, 1)→ (E, x, p−1(b)) is
a lift of γ : (I, 0, 1)→ (B, b, b).

Now, γ̃ is an element of P (B, b) so (x, γ̃) is an element of S × P (B, b). We
have γ̃(1) = (x, γ̃) ∼ (x.γ̃, 1) ∈ p−1(b) by definition of the equivalence relation
on S × P (B, b). Hence the two actions of Ω(B, b) on p−1(b) are the same.

The construction above is actually functorial.

Theorem 8.3. Assume that B is path connected and locally contractible.
There is an equivalence of categories between the category of right π1(B, b)-
sets and the category of covering spaces of B.

Week 9: Group actions and covering spaces

9.1 The universal cover

Suppose that B is locally contractible and path connected. Let π1(B, b) act on
itself. The corresponding cover of B is known as the universal cover.

Proposition 9.1. The unviersal cover is simply connected.

Proof. Consider the exact sequence

1→ π1(E, e)→ π1(B, b)→ π0(p−1(b), e).

The last map is a bijection because π0(p−1(b), e) = p−1(b) = π1(B, b) by defini-
tion. Therefore π1(E, e) = 1.

Direct proof. We can also show this directly. Suppose that γ is in π1(E, e).
Then pγ is a loop in π1(B, b). Then by definition, if β ∈ π1(B, b) the action of
γ on e is e.pγ = eγ = γ(1) (remember that e ∈ p−1(b) = π1(B, b) by definition).
But γ is a loop in π1(E, e) so γ(1) = e. But then eγ = e. That is, γ = 1 since
π1(B, b) is a group.

9.2 Connectedness

Let (B, b) be a pointed space. In this section p : E → B will be a covering
space of B and S = p−1(b). We assume that B is path connected and locally
contractible.

Proposition 9.2. E is path connected if and only if the action of π1(B, b) on
S is transitive.
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Proof. Suppose that E is path connected. Then for every x, y ∈ p−1(b), there
is a path f from x to y. Then pf is a loop in B based at b and x.pf = y.

Now suppose that π1(B, b) acts transitively on S. Suppose x, y ∈ E. Then
since B is path connected, we can choose paths f from p(x) to b and g from p(y)

to b. Lift f and g to paths f̃ and g̃ with starting points x and y. Then f̃(1) and

g̃(1) are in S. Therefore there is some loop h ∈ π1(B, b) with f̃(1).h = g̃(1). This

means that if we lift h to a path h̃ starting at f̃(1) its endpoint is g̃(1). Thus the

path f̃ .h̃.g̃−1 is a path from x to y. This shows that E is path connected.

Proposition 9.3. Let G be a group. There is an equivalence{
(S, x)

∣∣∣∣∣ S is a transitive
right G-set
and x ∈ S

}
'
{

subgroups of G
}

Proof. The equivalence sends (S, x) to Stab(x) ⊂ G and sends H ⊂ G to
(H\G,H).

Corollary 9.4. There is an equivalence{
connected covers p : (E, x)→ (B, b)

}
'
{

subgroups of π1(B, b)
}
.

What about unpointed covers?

Proposition 9.5. There is an equivalence{
non-empty, transitive actions of G

}
'
{ conjugacy classes of

subgroups of G

}
.

Proof. Let G act transitively on S. Pick x ∈ S. Let Φ(S) be the conjugacy
class of Stab(x). Notice that if we were to replace x by y then y = x.g for some
g ∈ G and Stab(y) = g−1 Stab(x)g so this is well-defined.

Conversely, suppose that H is a subgroup of G. Then H\G is a set with
a transitive right G-action. Suppose that H is replaced by g−1Hg, which we
abbreviate to Hg. Then H\G will be replaced by Hg\G. However, H\G and
Hg\G are isomorphic as right G-sets: consider the function µ : H\G → Hg\G
sending Ht to Hgg−1t = g−1Ht. We have to check this is well defined, i.e., that
if Ht = Ht′ then µ(Ht) = µ(Ht′). If Ht = Ht′ then t′ = ht for some h ∈ H so

µ(Ht′) = Hgg−1ht = g−1Hht = g−1Ht = µ(Ht).

It is evident that the function ν : Hg\G → H\G defined by ν(Hgt) = Hgt is
inverse to µ. Furthermore, µ is equivariant, since we have µ(Htu) = Hgg−1tu =
µ(Ht).u. Thus if we define Ψ(H) = H\G, this gives a well-defined map from the
set of conjugacy classes of subgroups of G to isomorphism classes of non-empty,
transitive actions of G.

We can check these constructions are inverse to each other by noting that
Stab(x)\G is isomorphic to S and the stabilizer of the point of H\G correspond-
ing to H is precisely H.
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Corollary 9.6. There is an equivalence{
connected covers p : E → B

}
'
{

conjugacy classes of subgroups of π1(B, b)
}
.

9.3 Automorphisms

The automorphism group of a covering space p : E → B is the set of contin-
uous maps f : E → E such that pf = p. We denote this group by AutB(E).

Suppose that p : E → B corresponds to the right action of π1(B, b) on
a set S. Then since covering spaces of B form an equivalent category to the
category of right actions of π1(B, b), this means that AutB(E) = AutG(S)
where AutG(S) is the set of equivariant bijections from S to itself. Recall
that a function f : S → S is called equivariant if f(x.g) = f(x).g for every
g ∈ G.

Proposition 9.7. Suppose that G acts transitively on a set S and x is a point of
S. Then AutG(S) ∼= N(Stab(x))/ Stab(x) where N(Stab(x)) is the normalizer
of the stabilizer of x.

Proof. First we define a function µ : AutG(S)→ N(Stab(x))/ Stab(x). Suppose
ϕ : S → S is an equivariant bijection. Since G acts transitively on S, we have
ϕ(x) = x.g for some g in G. On the other hand, ϕ is supposed to be equivariant,
so ϕ(x.h) = ϕ(x).h = x.gh for all h ∈ G. But if h ∈ Stab(x) then we have
ϕ(x.h) = ϕ(x) = x.g and ϕ(x.h) = ϕ(x).h = x.gh. Therefore x.gh = x.g, or
effectively, x.ghg−1 = x. Thus ghg−1 ∈ Stab(x), so g ∈ N(Stab(x)). Define
µ(ϕ) to be the class of g in N(Stab(x))/ Stab(x).

Note that g was not unique above, so we have to check this is well defined.
Suppose that ϕ(x) = x.g′ as well. Then x.g′g−1 = x so g′g−1 ∈ Stab(x). That
is g′ and g define the same class in N(Stab(x))/ Stab(x).

Now we construct the inverse ν : N(Stab(x))/ Stab(x)→ AutG(S). Suppose
g ∈ N(Stab(x)). Since the action of G on S is transitive, every element of S
can be written as x.h for some (possibly non-unique) h ∈ G. Define ν(g) :
S → S to be the function ν(g)(x.h) = x.gh. We have to check this is a well-
defined function: if x.h = x.h′ we have ν(g)(x.h) = x.gh and ν(g)(x.h′) =
x.gh′. But h′h−1 ∈ Stab(x) so gh′h−1g−1 ∈ Stab(x) (because g ∈ N(Stab(x))),
which implies that x.gh′h−1g−1 = x. That is, x.gh′ = x.gh. So ν(g)(x.h) =
ν(g)(x.h′). Therefore this is well-defined on N(Stab(x)). We also have to check
that ν(Stab(x)) is the identity automorphism of S. But if g ∈ Stab(x) then
ν(g)(x.h) = x.gh = x.h since x.g = x; therefore ν(g) = idS .

I omit the verification that ν and µ are inverse functions, as well as the
explicit verification that they are homomorphisms, both of which are trivial.

9.4 Symmetry

A cover p : E → B is called symmetric or regular or Galois if for each
x, y ∈ π−1(b) there is an automorphism ϕ : E → E of the cover such that
ϕ(x) = y.
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Lemma 9.8. A cover p : E → B is symmetric if and only if the action of
π1(B, b) on p−1(b) is symmetric, in the sense that for all x, y ∈ p−1(b) there is
an automorphism ψ of p−1(b) and a π1(B, b)-set such that ψ(x) = y.

We will call the π1(B, b)-sets satisfying the above symmetric π1(B, b)-sets.

Proposition 9.9. There is an equivalence{
(S, x)

∣∣∣∣∣ S a symmetric,
transitive G-set
x ∈ S

}
'
{

normal subgroups of G
}
.

Proof. Suppose that S is symmetric and x ∈ S. Then the corresponding sub-
group of G is Stab(x). Suppose that g ∈ G. Then there is a G-equivariant
bijection ϕ : S → S such that ϕ(x) = x.g. Then

Stab(ϕ(x)) = {h ∈ G
∣∣ϕ(x).h = ϕ(x)}

= {h ∈ G
∣∣ϕ(x.h) = ϕ(x)}

= {h ∈ G
∣∣x.h = x}

= Stab(x)

since ϕ is a bijection. On the other hand, Stab(x.g) = g−1 Stab(x)g. This
proves Stab(x) is normal.

Conversely, suppose that H ⊂ G is normal. Then the corresponding action
of G is the right action on H\G. Let Hx and Hy be any two elements of
H\G. Let g = yx−1 so that gx = y. Then define a map ϕ : H\G → H\G
by ϕ(Hz) = g−1Hz. This is G-equivariant because ϕ(Hz.g′) = g−1Hzg′ =
ϕ(Hz).g′. Furthermore, ϕ(Hx) = g−1Hx = Hgx = Hy. Thus the action of G
on H\G is symmetric.

Corollary 9.10. There is a bijection of sets{
symmetric, transitive right G-actions

}
'
{

normal subgroups of G
}

Corollary 9.11. There is an equivalence of categories

{
regular covers

p : (E, e)→ (B, b)

}
'

{ normal subgroups
of G up to
conjugation

}
'

{ quotient groups
of G up to
conjugation

}

There is a bijection of sets{
regular covers
p : E → B
up to isom.

}
'

{
normal subgroups

of G

}
'

{
quotient groups

of G

}

Corollary 9.12. Let p : E → B be a connected covering space corresponding
to a normal subgroup N ⊂ π1(B, b). Then AutB(E) ∼= π1(B, b)/N .

Proof. Apply Proposition 9.7.
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Week 10: The van Kampen theorem

10.1 Gluing covers

Suppose that B = U ∪ V with U and V being open subsets of B, and let
W = U ∩ V . Assume that the basepoint b is in W . To specify a covering space
of B we can give a covering space EU of U , a covering space EV of V , and
an isomorphism of the covering spaces p−1U (W ) and p−1V (W ) of W . Given these
data, we can construct a covering space E of B by gluing together these covering
spaces.

Let us make this construction precise. Suppose that E is a covering space of
B. Let Φ(E) = (EU , EV , α) where α is the isomorphism between the covering
spaces α : p−1U (EU ) ∼= EW ∼= p−1V (EV ).

Suppose that (EU , EV , α) is a triple consisting of a cover pU : EU → U , a
cover pV : EV → V , and an isomorphism α : p−1U (W ) ∼= p−1V (W ) of covers of
W . Then let Ψ(EU , EV , α) be the space obtained by dividing EU q EV by the
equivalence relation x ∼ α(x) for x ∈ p−1U (W ). We get a projection p : E → B by
defining p(x) = pU (x) if x ∈ EU and p(x) = pV (x) if x ∈ EV . This is well defined
because if x ∼ y then y = α(x) so p(x) = pU (x) = pV (α(x)) = pV (y) = p(y).
Furthermore, the universal property of the quotient topology guarantees that
this projection is continuous.

Lemma 10.1. The projection p : E → B defined above is a covering space.

Proof. Notice that p−1(U) = EU and p−1(V ) = EV . Since pU : EU → U and
pV : EV → V are covering spaces, we can cover U by open sets Ui and V
by open sets Vi such that p−1U (Ui) = S × Ui and p−1V (Vi) = S′ × Vi for some
sets S and S′. Furthermore, b ∈ U and b ∈ V so p−1(b) = p−1U (b) ∼= S and
p−1(b) = p−1V (B) ∼= S′, so we have a bijection between S and S′. Therefore
the Ui and Vi together form a cover of B such that p−1(Ui) ∼= S × Ui and
p−1(Vi) ∼= S × Vi.

Exercise 17. Suppose that B is a connected topological space and p : E → B
is a continuous map. Assume that B has a cover by open sets Ui such that
p
∣∣
Ui

: p−1(Ui) → Ui is a covering space for each i. Show that under this
hypothesis, p : E → B is a covering space.

We are going to show that to give a covering space of B is essentially equiv-
alent to giving covering spaces of U and V that agree over U ∩ V . But what
does it mean to say these are equivalent? It means first of all that every triple
(EU , EV , α) consisting of a covering space pU : EU → U , a covering space
pV : EV → V , and an isomorphism α : p−1U (W ) → p−1V (W ) of covering spaces
of W , comes from some covering space p : E′ → B, in the sense that there are
isomorphisms fU : EU ∼= E′U and fV : EV ∼= E′V such that if x ∈ p−1U (W ) then
fU (x) = fV (α(x)).

It also means that to give a morphism of covering spaces f : E → E′ of
B it is the same as to give morphisms of covering spaces fU : EU → E′U and
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fV : EV → E′V such that fU and fV agree where their definitions overlap:
fU
∣∣
EW

= fV
∣∣
EW

: EW → E′W .

Proposition 10.2. The constructions Φ and Ψ determine an equivalence of
categories:

{
covers of B

}
'

(EU , EV , α)

∣∣∣∣∣
EU covers U
EV covers V
α : p−1U (W ) ∼= p−1V (W )

 .

That is Φ(Ψ(EU , EV , α)) ∼= (EU , EV , α) and Ψ(Φ(E)) ∼= E.

Proof. First we show that maps of covering spaces E → E′ of B correspond to
maps fU : EU → E′U and fV : EV → E′V that agree on EW . Indeed, if we are
fU and fV then we get maps f ′U : EU → E′ and f ′V : EU → E′ that agree on
EW . But E is the union of the open sets EU and EV so f ′U and f ′V glue together
to give a continuous map of covering sapces E → E′.

Now we show that every covering space p : E → B comes from some
(E′U , E

′
V , α). Indeed, we can take E′U = p−1(U) and E′V = p−1(V ). Then

p−1U (W ) = p−1V (W ) so we can take α to be the identity map.

10.2 Gluing fundamental groups

Suppose, as in the last section, that B = U ∪V , define W = U ∩V , and assume
that b ∈W . We have a map

π1(U, b) ∗
π1(W,b)

π1(V, b)→ π1(B, b)

because we have maps π1(U, b) → π1(B, b) and π1(V, b) → π1(B, b) that agree
on π1(W, b). In this section, we will prove that this homomorphism is an iso-
morphism.

Theorem 10.3 (Siefert, van Kampen). Suppose that B = U ∪ V for open
subsets U and V of B both containing the basepoint b. Let W = U∩V . Assume
that U , V , and W are all path connected and locally contractible. Then the
map

π1(U, b) ∗
π1(W,b)

π1(V, b)→ π1(B, b)

is an isomorphism of groups.

Now, assume that U , V , and W are all path connected and locally con-
tractible. Then we can identify

Cov(U) ' π1(U, b)-Sets

Cov(V ) ' π1(V, b)-Sets

Cov(W ) ' π1(W, b)-Sets.
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Define G = π1(U, b) ∗π1(W,b) π1(V, b). A G-set consists of a set S with actions of
π1(U, b) and of π1(V, b) that agree on π1(W, b). Since a π1(U, b)-set is the same
as a covering space of U , etc., this means that a G-set consists of a covering
space of pU : EU → U , a covering space pV : EV → V , and an isomorphism
between the covering spaces p−1U (W ) → W and p−1V (W ) → W . We saw in the
last section that this is the same as giving a covering space of B. In effect, we
have therefore proved

Proposition 10.4. Cov(B) ' G-Sets.

By this we mean that there are constructions Φ : Cov(B) → G-Sets and
Ψ : G-Sets→ Cov(B) such that

Φ(Ψ(S)) ∼= S

Ψ(Φ(E)) ∼= E

for all covering spaces p : E → B of B and all G-sets S. The definition of
Φ is first to associate to a cover p : E → B a triple consisting of a covering
space pU : p−1(U) → U , pV : p−1(V ) → V , and α : p−1U (W ) ∼= p−1V (W ), then
to associate to these the corresponding π1(U, b)-, π1(V, b)-, and π1(W, b)-sets,
observe that these are compatible, and deduce that they form a G-set. The
functor Ψ reverses this procedure: associate to a G-set the induced π1(U, b)-,
π1(V, b)-, and π1(W, b)-sets; associate to these the corresponding covers of U , V ,
and the isomorphism between their restrictions to W ; finally, glue these together
to get a cover of B.

On the other hand, Cov(B) ' π1(B, b)-Sets so the proposition tells us that
we have an equivalence π1(B, b)-Sets ' G-Sets. If examine exactly what this
equivalence is, we will see that it associates to a π1(B, b)-set the G-set obtained
by restricting via the homomorphism G→ π1(B, b).

The Siefert–van Kampen theorem now follows from the following lemma:

Lemma 10.5. Suppose that ϕ : H → G is a homomorphism of groups and
the induced functor ϕ∗ : G-Sets → H-Sets is an equivalence. Then ϕ is an
isomorphism.

Proof. We have to check that ϕ is a bijection. Let S denote the action of G
on itself and let T denote the action of H on itself. Then we have a map of
H-sets f : T → ϕ∗(S). Because ϕ∗ is an equivalence there is some G-set S′ and
an isomorphism of H-sets T ∼= ϕ∗(S′). We therefore have a H-equivariant map
f ′ : ϕ∗(S′) → ϕ∗(S). Since f will be a bijection if and only if f ′ is, it will be
sufficient to verify that f ′ is a bijection.

Also because ϕ∗ is an equivalence, there is a G-equivariant map f ′′ : S′ → S
such that ϕ∗(f ′′) = f ′. Since the underlying maps of sets of the equivariant
maps f ′ and f ′′ are the same, it will now be sufficient to check that f ′′ is a
bijection.

We will show first that G acts transitively on S′. Since any equivariant map
of transitive G-sets is surjective, and G obviously acts transitively on S, this
will imply f ′′ is surjective. For this, note that ϕ∗(S′) is isomorphic to T , which
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has a transitive action of H. But this means that for every x, y ∈ T we have
some h ∈ H with x.h = y. So then for every x, y ∈ S′ (recall S and T have the
same underlying set) we have x.ϕ(h) = y. In particular, there is some element
of G—namely ϕ(h)—carrying x to y. So the action of G on S′ is transitive.

Now we verify that the map f ′′ : S′ → S is surjective. If y ∈ S, pick any
x ∈ S′. Then since g acts transitively on S there is some g ∈ G such that
f ′′(x).g = y. But then f ′′(x.g) = y because f ′′ is equivariant, so y is in the
image of f ′′. Therefore f ′′ is surjective.

Now we check the injectivity of f ′′. Suppose that f ′′(x) = f ′′(y). Then
since G acts transitively on S′ we can write y = x.g for some g ∈ G and we get
f ′′(x) = f ′′(y) = f ′′(x.g) = f ′′(x).g. Therefore g lies in the stabilizer of f ′′(x).
But G acts freely on S, so the stabilizer subgroup of f ′′(x) is trivial. Therefore
g = 1 so y = x.g = x.1 = x. Thus f ′′ is injective.

10.3 A more general Siefert–van Kampen theorem

In fact, a fancier version of this theorem is possible. Suppose that we cover B
by path connected open sets Uα such that the intersections Uα ∩ Uβ ∩ Uγ are
all path connected. Assume also that B is locally contractible. Let’s abbreviate
Uα ∩ Uβ ∩ Uγ as Uαβγ .

Then to give a covering space of B is the same as to give a covering space
Eα of each of the Uα, along with isomorphisms φαβ : Eα

∣∣
Uα∩Uβ

∼= Eβ
∣∣
Uα∩Uβ

satisfying the cocycle condition—that the diagram

Eα
∣∣
Uαβγ

φαβ

∣∣
Uαβγ //

φαγ

∣∣
Uαβγ $$HHHHHHHHHHH

Eβ
∣∣
Uαβγ

φβγ

∣∣
Uαβγzzvvvvvvvvvvv

Eγ
∣∣
Uαβγ

should commute. Then we have a map

G = lim−→
α,β,γ

π1(Uαβγ , b)→ π1(B, b)

and
Cov(B,F ) = Hom(G,ΣF ).

On the other hand, we also have

Cov(B,F ) = Hom(π1(B, b),ΣF ).

As we saw before a map G → π1(B, b) induces an equivalence between the
categories of G-sets and π1(B, b)-sets if and only if the map G→ π1(B, b) is an
isomorphism.
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Theorem 10.6. Suppose that B is locally contractible and B =
⋃
Uα for open

subsets Uα containing the basepoint b. Assume that all triple intersections Uαβγ
are path connected. Then the natural map

lim−→
α,β,γ

π1(Uαβγ , b)→ π1(B, b)

is an isomorphism of groups.

References

[Mun] James R. Munkres. Topology: a first course. Prentice-Hall Inc., Engle-
wood Cliffs, N.J., 1975.

21


	Induced topologies
	The (generalized) quotient topology
	The (generalized) subspace topology
	The product topology
	Example: S1 and R/ Z

	The product topology and Tychonoff's theorem
	The axioms of choice
	Ultrafilters
	Functoriality
	Convergence, separation and compactness

	Tychonoff's theorem

	Function spaces
	Topologies on the set of continuous functions between two topological spaces
	The universal property of the mapping space

	Urysohn's Lemma
	Homotopy and the fundamental group
	Covering spaces
	Group actions and covering spaces
	The universal cover
	Connectedness
	Automorphisms
	Symmetry

	The van Kampen theorem
	Gluing covers
	Gluing fundamental groups
	A more general Siefert–van Kampen theorem


