
Math 6210 — Fall 2012

Assignment #7

Choose 5 problems to submit by Weds., Dec. 12.

For your reference, here is the definition of a semi-simplicial set.

Definition. Let [n] denote the totally ordered set {0 < 1 < · · · < n}.
A semi-simplicial setX is a collection of setsXn, one for each non-negative

integer n, and for each order preserving injection u : [m] → [m] a function

Xu : Xn → Xm satisfying the following condition: if [`]
v−→ [m]

u−→ [n] is a
sequence of order preserving injections then the composition of the sequence of

maps Xn
Xu−−→ Xm

Xv−−→ X` coincides with Xuv : Xn → X`.
If X and Y are semi-simplicial sets, then a morphism f : X → Y is a se-

quence of functions fn : Xn → Yn such that for every order preserving injection
u : [m]→ [n], the diagram

Xn
Xu //

fn

��

Xm

fm

��
Yn

Yu // Ym.

Every semi-simplicial set has a geometric realization, constructed in the
following way. Let X be a semi-simplicial set. Begin with the discrete topolog-
ical space X0. For each σ ∈ X1, attach a copy of ∆1 going from d1(σ) to d0(σ).
Then attach a 2-simplex to this space for each σ ∈ X2. Inductively, for each n
we get a space Yn, with Y0 = X0, and Yn+1 obtained from Yn by adjoining to
Yn a copy of ∆n+1 for each σ ∈ Xn+1. The attaching map for σ is determined
by the n+ 1 boundary faces of d0(σ), . . . , dn(σ).

1 Semi-simplicial sets

Exercise 1. (a) Find a semi-simplicial model for the 2-holed torus.

(b) Find a semi-simplicial model for RP3.

(c) Find a semi-simplicial model for S3.

Exercise 2. [Hat, §2.1, #3] Find a semi-simplicial model for RPn for all n.
(Hatcher has a suggestion about how to do this.)

Exercise 3. Let X and Y be semi-simplicial sets. Construct a new semi-
simplicial set Z with Zn = Xn × Yn. If u : [m] → [n] is an order preserving
injection, let Zu = Xu × Yu.
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(a) Show that Z is a semi-simplicial set.

(b) Show with an example that
∣∣Z∣∣ 6= ∣∣X∣∣× ∣∣Y ∣∣.

This defect is one reason topologists prefer simplicial sets to semi-simplicial sets.

Exercise 4. Let X be a topological space. Define operators Pi : Cn(X,Z) →
Cn+1(X×I,Z) by the following rule. Given σ : ∆n → X, let σ′ : ∆n×I → X×I
be the induced map. Let vi ∈ ∆n × I be the point with coordinates (ei, 0) and
let wi ∈ ∆n × I be the point with coordinates (ei, 1) (here we are viewing ∆n

as a subset of Rn+1 by way of its barycentric coordinates and ei is the i-th
standard basis vector of Rn+1). For points a1, . . . , ak ∈ ∆n × I that are not
contained in a (k − 1)-dimensional plane, let [a1, . . . , ak] be the simplex they
span. With this notation, 1 ←1

Pi(σ) = σ
∣∣
[v0,...,vi,wi,...,wn]

.

Define P (σ) =
∑n

i=0(−1)iPi(σ) and extend by linearity to get a map P :
Cn(X,Z)→ Cn+1(X × I,Z).

Verify the following formula that was stated in class:

∂P (σ)− P (∂σ) = σ × {1}− σ × {0}.

Exercise 5. Let f, g : X → Y be homotopic maps. Show that f∗ and g∗ give
the same map Hn(Y,Z)→ Hn(X,Z).

2 Eilenberg–Mac Lane spaces

In this section, we will show that a K(G, 1) exists for each group G.

Exercise 6. A labelling of the edges of ∆n by elements of G is a function λ
from the set of edges of ∆n to the set G. To give such a labelling, we give a
value λ(i, j) ∈ G for every i ≤ j. We define BGn to be the set of all ways
of labelling the edges of ∆n by elements of G satisfying the following property:
λ(i, j)λ(j, k) = λ(i, k) (the product here is the group operation) for all i ≤ j ≤ k
in the set {0, 1, . . . , n}.

Note that if u : [m] → [n] is a monotonic injection corresponding to a face
of ∆n then the composition of λ with u is a labelling of the edges of ∆m by G
satisfying the compatibility condition explained above.

(a) (optional) Let ∆n denote the category whose objects are the integers
0, 1, . . . , n and in which Hom(i, j) is empty for j < i and consists of exactly
one morphism for j ≥ i. Let BG denote the category with one object, ∗,
and Hom(∗, ∗) = G; the rule for composition is the group law in G. Verify
that BGn, as defined above, is the set of functors from ∆n to BG.

(b) Verify that with the definitions above, BG is a semi-simplicial set.

1correction: originally this said Pi(σ) = [v0, . . . , vi, wi, . . . , wn]; thanks Jonathan Lamar
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(c) Compute π1(
∣∣BG∣∣). (Hint: use the Siefert–van Kampen theorem.)

By definition, the group homology ofG (with coefficients in Z) isH∗(BG,Z);
the group cohomology of G (with coefficients in Z) is H∗(BG,Z).

Exercise 7. Let G be a group. Define EGn to be the set of labellings of
the vertices of ∆n by elements of G. An element of EGn is thus a function
µ : [n]→ G.

If u : [m] → [n] is an order preserving function corresponding to a m-
dimensional face of ∆n, let EGu(µ) be the labelling of the vertices of ∆m cor-
responding to the function µ ◦ u.

(a) (optional) Let C be the category whose objects are the elements of G and
in which there is exactly one morphism between any two objects. Show
that EGn is the set of functors from the category ∆n (as defined in the
last exercise) to C.

(b) Verify that with this definition, EG is a semi-simplicial set.

(c) Show that
∣∣EG∣∣ is contractible.

Exercise 8. Let µ be a labelling of the vertices of ∆n by elements of G. Define
a labelling of the edges of ∆n by the rule

λ(i, j) = µ(j)µ(i)−1.

(a) Show that this defines a map of semi-simplicial sets p : EGn → BGn.
Conclude that we obtain a continuous map of topological spaces

∣∣p∣∣ :∣∣EG∣∣→ ∣∣BG∣∣.
(b) [Hat, §1.B, #1] Show that this map makes

∣∣EG∣∣ into a covering space of∣∣BG∣∣.
(c) Deduce (using the previous exercise) that πn(

∣∣BG∣∣) = 0 for all n ≥ 2.

Conclude that
∣∣BG∣∣ is a K(G, 1).

3 Homology and cohomology

In this section, you are asked to compute homology and cohomology with coef-
ficients in a general commutative ring A. If you aren’t comfortable doing that
then do separate computations for A = Z, A = Q, and A = F2. (And if you
aren’t comfortable doing that then just do the computation for A = Z.)

Exercise 9. Let X be the oriented surface of genus 2 (the 2-holed torus).
Compute the homology and cohomology of X with coefficients in a commutative
ring A.

Exercise 10. Compute the homology and cohomology of RP3 with coefficients
in a commutative ring A.
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Exercise 11. Compute the homology and cohomology of S3 with coefficients
in a commutative rings A.

Exercise 12. [Hat, §2.1, #8]

Exercise 13. [Hat, §2.1, #9]

Exercise 14. Suppose that X is a retract of Y .

(a) [Hat, §2.1, #11] Show that Hn(X,A)→ Hn(Y,A) is injective.

(b) Show that Hn(Y,A)→ Hn(X,A) is surjective.
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