
Math 6210 — Fall 2012

Assignment #4

Choose 5 problems to submit by Weds., Oct. 17 with at
least one problem from each section. Remember to cite
your sources.

Exercise 1. Suppose that Y is discrete. Let X be a topological space and let
XY be the set of functions from Y to X. Show that the product topology on
XY coincides with the compact open topology.

Exercise 2. A pointed topological space is a pair (X,x) where X is a
topological space and x is a point of X. Usually we leave the point tacit and refer
to X as the pointed topological space. If X and Y are based topological spaces,
let Cont∗(X,Y ) be the subspace of Cont(X,Y ) consisting of those f : X → Y
that preserve basepoints—that is, those f : X → Y such that f(x) = y. Here
are two constructions concerning pointed topological spaces:

(i) First choose a basepoint for S1. The based loop space of a pointed
topological space is ΩX := Cont∗(S

1, X). Notice that ΩX is a pointed
topological space: the basepoint is the constant map sending all of S1 to
the basepoint x ∈ X.

(ii) The smash product of pointed topological spaces (X,x) and (Y, y) is
denoted X ∧ Y and is obtained by first forming the product X × Y and
then collapsing the subspace X × {y} ∪ {x} × Y to a point. The result is
given the quotient topology. Notice that it has a basepoint, the point to
which X × {y} ∪ {x} × Y was collapsed.

(iii) The suspension of a pointed topological space (X,x) is the smash prod-
uct with a circle. It is denoted ΣX = S1 ∧X.1 ←1

These constructions are of fundamental importance in homotopy theory.
Let (X,x) and (Y, y) be based topological spaces. Construct a natural bi-

jection
Cont∗(Y,ΩX) = Cont∗(ΣY,X).

Exercise 3. (a) Let (X,x) and (Y, y) be pointed spaces. Construct a canon-
ical map π1(X×Y, (x, y))→ π1(X,x)×π1(Y, y) and show it is an isomor-
phism of groups.

(b) Compute π1(T, t) where T is the torus and t is any basepoint.

Exercise 4. (a) Show that R2 r {0} is homotopy equivalent to S1.

1forgot to include the definition of ΣX originally; thanks Megan and Tom
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(b) Compute π1(R2 r {0}, x) where x is any basepoint. (Hint: use Exer-
cise 12.)

Exercise 5. (a) Prove that R1 ∼= Rn if and only if n = 1.

(b) Prove that R2 ∼= Rn if and only if n = 2.

Exercise 6. [Hat, §1.1, #5] Let X be a topological space. Show that the
following three conditions are equivalent:

(a) Every map S1 → X is homotopic to a constant map (with image a point).

(b) Every map S1 → X extends to a map D2 → X.

(c) For all x0 ∈ X we have π1(X,x0) = 0.

Exercise 7. [Hat, §1.1, #6] Let [S1, X] denote the set of homotopy classes
of maps from the circle to X (not preserving basepoints). There is a natural
map Φ : π1(X,x) → [S1, X] by forgetting basepoints. Show that this identifies
[S1, X] with the set of conjugacy classes in π1(X,x).

Exercise 8. (a) Prove that ΣSn ∼= Sn+1. (Hint: Use the fact that Sn can
be obtained by collapsing the boundary of [0, 1]n to a point.)

(b) Use this and the fact that for pointed spacesX and Y we have Cont∗(ΣX,Y ) =
Cont∗(X,ΩY ) to demonstrate that πn(X,x) is a group for all pointed
spaces (X,x) and all n > 0. (Hint: Show that πn(X) = πn−1(ΩX) for
n > 0.)

Proof. We know that Cont∗(S
n, X) = Cont∗(S

n−1,ΩX) since ΣSn−1 =
Sn. We have to check that homotopy gives the same equivalence relation
under this identification. The set of based homotopies between maps in
Cont∗(S

n, X) is Cont((I × Sn, I × ∗), (X, ∗)). We can identify this with
Cont((I × S1 × Sn−1, I × S1 ×∗∪ I ×∗× Sn−1), (X, ∗)). But this may in
turn be identified with Cont((I×Sn−1, I×∗), (Cont((S1, ∗), (X,x)), ∗)) =
Cont((I × Sn−1, I × ∗),ΩX), which is precisely the set of based homo-
topies in ΩX. Therefore homotopy imposes the same equivalence rela-
tion and [(Sn, ∗), (X, ∗)] = [(Sn−1, ∗), (ΩX, ∗)]. In other words, πn(X) =
πn−1(ΩX).

Now, by induction, we can identify πn(X) = π1(Ωn−1X) so πn(X) gets a
group structure from the group structure on π1(Ωn−1X).

Exercise 9. Let f, g : X → Y be continuous functions. Suppose that H : f ' g
and H ′ : f ' g are two homotopies from f to g. A homotopy between
homotopies is a continuous function

ϕ : [0, 1]× [0, 1]×X → Y
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such that

ϕ
∣∣{0}×[0,1]×X = H ϕ

∣∣{1}×[0,1]×X = H ′

and ϕ
∣∣
[0,1]×{0}×X is the constant homotopy from f to itself and ϕ

∣∣
[0,1]×{1}×X

is the constant homotopy from g to itself.

(a) Let H : [0, 1]×X → Y be a homotopy from f to g and let H ′ : [0, 1]×Y →
Y be a homotopy from g to h. Verify that

F (t, x) =

{
H(2t, x) t ≤ 1/2

H(2t− 1, x) t ≥ 1/2

defines a homotopy from f to h. Write F = H ′ ◦H for this homotopy.

(b) Show that this composition law is almost never associative

(c) Verify that this composition law is homotopy associative in the follwing
sense: the homotopies H ◦ (H ′ ◦H ′′) and (H ◦H ′) ◦H ′′ are homotopic to
one another.

(d) Use this to prove that π1(X,x) is a group. (Hint: view π1(X,x) as the
set of homotopies from the map x : (point)→ X to itself.)

Exercise 10 (Cf. [Mun, §52, #7]). A group object in groups is a group G
equipped with two group structures m : G×G→ G and m′ : G×G→ G such
that each map m and m′ is a homomorphism with respect to the other group
structure. Note that each of these is associative, has an identity element, and
has inverses, but the identity elements and inverses need not be the same (at
least a priori).2 ←2

(a) Suppose that G is a group object in groups. Show that m = m′ and the
group structure is abelian. (Hint: first check that m(m′(x, y),m′(z, w)) =
m′(m(x, z),m(y, w)) for all x, y, z, w ∈ G; then check that the identity
elements in the two group structures are the same.)

(b) Let X be a based topological space. Construct a continuous map ΩX ×
ΩX → ΩX that concatenates loops.

(c) Show that for any space Y , this induces a function [Y,ΩX] × [Y,ΩX] →
[Y,ΩX]. Verify that this gives [Y,ΩX] a group structure.

(d) Deduce that [S1,ΩX] has two group structures: one coming from the
usual group structure on π1(ΩX) and the other coming from the group
structure constructed above.

2definition changed here (the definition that was here earlier is equivalent but is harder to
use in this problem); also added a hint or two below.
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(e) Let m and m′ denote the multiplication functions for these two group
structures. Show that each one is a homomorphism with respect to the
other.

(f) Conclude that for any based space X, the set π2(X) has the structure of a
group object in groups. Deduce that π2(X) is abelian for any based space
X.

(g) Show πn(X) is abelian for all n ≥ 2 and any based space X. (Hint: use
the fact that πn(X) = πn−1(ΩX).)

Exercise 11. Let (X,x), (Y, y), and (Z, z) be pointed spaces. Assume that
f : (Y, y)→ (Z, z) is a continuous map. This induces a function

f∗ : Cont∗((X,x), (Y, y))→ Cont∗((X,x), (Z, z))

defined by f∗(g) = f ◦ g.

(a) Show that this induces a well-defined function

f∗ : [(X,x), (Y, y)]→ [(X,x), (Z, z)].

(b) Deduce that there is an induced map f∗ : πn(Y, y)→ πn(Z, z) for all n.

(c) Check that the map f∗ : π1(Y, y)→ π1(Z, z) is a homomorphism.

Exercise 12. Suppose that (X,x) and (Y, y) are based spaces. A based homo-
topy equivalence between (X,x) and (Y, y) is a continuous map f : (X,x) →
(Y, y) such that there is a continuous function g : (Y, y)→ (X,x) and based ho-
motopies between gf : (X,x)→ (X,x) and idX and between fg : (Y, y)→ (Y, y)
and idY .

Show that if f : (X,x) → (Y, y) is a based homotopy equivalence then the
induced map πn(X,x) → πn(Y, y) is an isomorphism for all n. (Hint: it might
be helpful to use the previous exercise.)
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