
Math 6120 — Fall 2012

Assignment #1

Choose 10 of the problems below to submit by Weds., Sep. 5.

Exercise 1. [Mun, §21, #10]. Show that the following are closed subsets of
R2:

(a) A =
{

(x, y)
∣∣xy = 1

}
,

(b) S1 =
{

(x, y)
∣∣x2 + y2 = 1

}
, and

(c) B2 =
{

(x, y)
∣∣x2 + y2 ≤ 1

}
.

(Hint: use the fact that the pre-image of a closed set under a continuous map
is closed. You don’t have to prove that polynomial functions from Rn to R
are continuous (but you should prove it for yourself if you haven’t done a proof
before).)

Exercise 2. Let X be a topological space and x a point in X. Define a new
space X ′ whose underlying set is X and whose open subsets are the empty set
and the open subsets of X containing x. Show that X ′ is also a topological
space.

Exercise 3. Show that every metric on a finite set is always equivalent to the
metric d(x, y) = 1. Conclude that a finite metric space has the discrete topology.

Exercise 4. (a) Suppose that X is a topological space with the discrete
topology and Y is any other topological space. Show that any function
X → Y is continuous.

(b) Suppose that X is a topological space and Y is a topological space with
the indiscrete topology. Show that any function X → Y is continuous.

(c) Let P be a point (with the unique topology on a one-element set) and let
X be a topological space. Conclude from the above that any functions
P → X and X → P are continuous.

Exercise 5. Let (X, d) be a metric space.

(a) Fix a positive number t. Let d′(x, y) = min
{
d(x, y), t

}
. Show that d′ is

also a metric on X.

(b) Let

d′′(x, y) =
d(x, y)

1 + d(x, y)
.

Show that this is a metric on X.
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(c) Show that both of the above metrics are equivalent to d.

Exercise 6. (a) Show that the following are metrics on Rn:

(a) The Euclidean metric, d(x, y) =
∣∣x− y∣∣. Cf. [Mun, §20, #9] for hints.

(b) The sup metric, d′(x, y) = supni=1

{∣∣xi − yi∣∣}.

(c) The metric d′′(x, y) =
∑n
i=1

∣∣xi − yi∣∣.
(b) Show that all of the metrics described above are equivalent.

Exercise 7. Show that if d and d′ are two equivalent1 metrics on the same set ←1

X then

(a) a sequence in X converges in d if and only if it converges in d′, and

(b) the limits are the same.

Exercise 8. Let Q be the set of rational numbers and fix a prime number p.
Every non-zero rational number can be written in a unique way as apn where
n is an integer and a is a rational number that is prime to p.2 Define∣∣apn∣∣

p
= p−n∣∣0∣∣

p
= 0.

Show that
d(x, y) =

∣∣x− y∣∣
p

defines a metric on Q.

Exercise 9. [Mun, §20, #3]. Let X be a metric space with metric d.

(a) Show that d : X ×X → R is continuous.

(b) Let X ′ be a topological space with the same underlying set as X. Show
that if d : X ′ × X ′ → R is continuous then the topology of X ′ is finer
than the topology of X.

Exercise 10. Suppose that X is a topological space, x is a point in X, and
x1, x2, . . . is a sequence of points in X. Does either of the following statements
imply the other? Are they equivalent?

(i) The point x is contained in the closure of the set S =
{
x1, x2, . . .

}
but not

in S itself.

(ii) The point x is the limit of the sequence x1, x2, . . ..

Give proofs or counterexamples to justify your answer.

1typo corrected—the word “equivalent” was missing; thanks Shawn
2This means that a = x

y
where x and y are integers that are not divisible by p.
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Exercise 11. Let X be a topological space. Call a subset S of X closed in the
sequential convergence (sc) topology if, whenever x1, x2, . . . is a sequence in S
possessing a limit in X, the limit lies in S.

(a) Show that this is a topology on X.

(b) Let X ′ be the topological space whose underlying set is X, but given the
sc topology. Let f be the map X ′ → X 3 whose underlying function is ←3

the identity. Show that f is continuous.

(c) Demonstrate that the sc topology is not always the same as the original
topology. You may want to use the following sequence of steps:

(i) Let Y be an uncountable well-ordered set whose ordinality is equal to
the first uncountable ordinal. Note that Y has no maximal element.
Let X = Y ∪

{
∞
}

be the union of Y and a maximal element. Declare
that U ⊂ X is open if U = ∅ or if there is some y ∈ Y such that
U =

{
x ∈ X

∣∣x ≥ y}.4 Show that this is a topology on X. ←4

(ii) Let U be the complement of ∞ in X. Show that U is not closed.

(iii) Show that the subset U of the last part is closed in the sc topology.
(Hint: use the fact that for any increasing sequence of countable
ordinals x1 < x2 < x3 < · · · there is a countable ordinal y such that
xi < y for all i; you can prove this fact by observing that a countable
union of countable sets is countable.)

(d) Show that the sc topology is the same as the original topology if X satisfies
the first countability axiom (each point of X has a countable basis of open
neighborhoods).

Exercise 12. [Mun, §20, #6]. Let x = (x1, x2, . . .) be an element of Rω and
ε ∈ (0, 1) a real number. Define

U(x, ε) = (x1 − ε, x1 + ε)× (x2 − ε, x2 + ε)× · · · .

(a) Show that U(x, ε) 6= Bd(x, ε) where d is the uniform metric on Rω. (Hint:
show that U(x, ε) is not even open!)

(b) Prove that5 ←5

Bd(x, ε) =
⋃
δ<ε

U(x, δ).

Exercise 13. Let X be a metric space. A Cauchy sequence in X is a sequence
x1, x2, . . . such that for every ε > 0 there is a positive integer N having the
property that d(xn, xm) < ε for every n,m ≥ N .

3typo corrected here
4this was not phrased correctly before; thanks James Van Meter for this observation and

clarification suggestions
5typo corrected in the equation below; thanks Paul Lessard
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(a) Let X ′ be the set of Cauchy sequences in X. Define a relation on X ′ by
which x1, x2, . . . is related to y1, y2, . . . if, for any ε > 0, there exists a
positive integer N such that d(xn, yn) < ε for all n ≥ N . Show that this
is an equialence relation.

(b) Let x1, x2, . . . and y1, y2, . . . be two elements of X ′. Define

d((x1, x2, . . .), (y1, y2, . . .)) = lim
n→∞

d(xn, yn).

(c) Show that this is a well-defined function on X ′×X ′. (Show that the limit
exists.)

(d) Show that this function is actually well-defined on the equivalence classes
in X and makes X into a metric space.

(e) Show that two sequence x1, x2, . . . and y1, y2, . . . are in the same equiva-
lence class in X ′ if and only if d((x1, x2, . . .), (y1, y2, . . .)) = 0.

(f) Let X be the set of equivalence classes in X ′. Let i : X → X that sends
x ∈ X to the equivalence class of the sequence x, x, x, . . .. Show that i is
injective and that its image is dense in X.

X is known as the completion of the metric space X.

Exercise 14. A pre-order on a set S is a relation ; that is reflexive and
transitive. That is x; x for all x ∈ S and if x; y ; z then x; z.

(a) An element x of a topological space X is said to specialize to y ∈ S if y is
contained in the closure of the set

{
x
}

. We write x; y to mean that y is
a specialization of x. Show that a closed set contains the specializations
of all its elements. A set that contains all the specializations of all its
elements is said to be closed under specialization.

(b) Show that a subset of a finite topological space is closed if and only if
it is closed under specialization.

(c) Give an example of an infinite topological space and a subset that is
closed under specialization but is not closed.

(d) Show that there is a one-to-one correspondence between topologies on a
finite set S and pre-orders on S. (Hint: Declare that x ; y if y is a
specialization of x.)

(e) Compute the number of topologies on a set with 2 elements, up to re-
ordering of the elements.

(f) Compute the number of topologies on a set with 3 elements, up to re-
ordering.
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