
Math 6120 — Fall 2012

Assignment #1

Choose 10 of the problems below to submit by Weds., Sep. 5.

Exercise 1. [Mun, §21, #10]. Show that the following are closed subsets of
R2:

(a) A =
{

(x, y)
∣∣xy = 1

}
,

(b) S1 =
{

(x, y)
∣∣x2 + y2 = 1

}
, and

(c) B2 =
{

(x, y)
∣∣x2 + y2 ≤ 1

}
.

(Hint: use the fact that the pre-image of a closed set under a continuous map
is closed. You don’t have to prove that polynomial functions from Rn to R
are continuous (but you should prove it for yourself if you haven’t done a proof
before).)

Solution. The maps f, g : R→ R2 defined by f(x, y) = xy and g(x, y) = x2+y2

are continuous because they are polynomials. The sets
{

1
}

and (−∞, 1] are

closed intervals so they are closed in R. Therefore A = f−1
{

1
}

, S1 = g−1
{

1
}

,
and B2 = g−1(−∞, 1] are all closed.

Comments. Most people got this. One mistake that occurred was to try to
use f(A) =

{
1
}

rather than f−1
{

1
}

= A, etc.; these are not equivalent, and
continuity only guarantees that the pre-image of a closed set is closed, not that
a set with closed image is closed.

Exercise 2. Let X be a topological space and x a point in X. Define a new
space X ′ whose underlying set is X and whose open subsets are the empty set
and the open subsets of X containing x. Show that X ′ is also a topological
space.

Solution. ∅ is open in X ′ by definition; X is open in X ′ because it is open in
X and it contains x.

If Ui, i ∈ I are open in X ′ then they are open in X so
⋃
Ui is open in X.

If the Ui are all empty then so is their union, so it is open in X ′; if any Ui is
non-empty then it contains x, so x ∈

⋃
Ui and

⋃
Ui is open in X ′.

If U and V are open in X ′ then they are open in X so U ∩ V is open in
X. If either U or V is empty then so is their intersection, so it is open in
X ′. Otherwise both U and V are non-empty so x is contained in both, hence
x ∈ U ∩ V , so U ∩ V is open in X ′.
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Comments. Most people got this problem. One common omission was to state
explicitly that

⋃
Ui and U ∩ V are open in X. Only two people dealt carefully

with the empty set when taking unions and intersections.

Exercise 3. Show that every metric on a finite set is always equivalent to the
metric1 ←1

d(x, y) =

{
0 x = y

1 x 6= y.

Conclude that a finite metric space has the discrete topology.

Solution. Perhaps the most efficient proof is to show that all metrics on a finite
set induce the discrete topology; since two metrics are equivalent if and only if
they are induce the same topology, this proves in particular that every metric
is equivalent to the given metric.

Let (X, d′) be a finite metric space and set ε = min
{
d′(x, y)

∣∣x, y ∈ X and x 6= y
}

.
Because X is finite ε is a positive number. Then for every x ∈ X the ball
Bd′(x, ε) is open (because ε > 0) and consists of the point x alone. It follows
that d′ induces the discrete topology.

Exercise 4. (a) Suppose that X is a topological space with the discrete
topology and Y is any other topological space. Show that any function
X → Y is continuous.

Solution. If U ⊂ Y is open then f−1(U) is open because all subsets of X
are open.

(b) Suppose that X is a topological space and Y is a topological space with
the indiscrete topology. Show that any function X → Y is continuous.

(c) Let P be a point (with the unique topology on a one-element set) and let
X be a topological space. Conclude from the above that any functions
P → X and X → P are continuous.

Comments. Almost everyone who attempted it got this problem. One mistake
was to attempt to use preservation of limits as the definition of continuity; while
continuous functions always preserve convergent sequences, the converse is not
always true.

Exercise 5. Let (X, d) be a metric space.

(a) Fix a positive number t. Let d′(x, y) = min
{
d(x, y), t

}
. Show that d′ is

also a metric on X.

1I forgot to include d(x, x) = 0 originally; thanks James Van Meter
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Solution. We have d′(y, x) = min
{
d(y, x), t

}
= min

{
d(x, y), t

}
= d(x, y);

the middle equality holds because d is a metric.

If d′(x, y) = 0 then min
{
d(x, y), t

}
= 0. Since t > 0 we must therefore

have d(x, y) = 0.

For x, y, z ∈ X we have

d′(x, z) ≤ d(x, z) ≤ d(x, y) + d(y, z)

d′(x, z) ≤ t ≤ min
{
d(x, y) + t, t+ d(y, z), 2t

}
.

Therefore

d′(x, z) ≤ min
{
d(x, y) + d(y, z), d(x, y) + t, t+ d(y, z), 2t

}
≤ min

{
d(x, y), t

}
+ min

{
d(y, z), t

}
= d′(x, y) + d′(y, z).

(b) Let

d′′(x, y) =
d(x, y)

1 + d(x, y)
.

Show that this is a metric on X.

Solution. We have d′′(y, x) = d′′(x, y) for obvious reasons. If d′′(x, y) = 0
then d(x, y) = 0 so x = y. For the triangle inequality, note first that if a
and b are non-negative real numbers then a ≤ b if and only if a

1+a ≤
b

1+b .
We therefore have

d′(x, z) =
d(x, z)

1 + d(x, z)

≤ d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)
+

d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)

= d′(x, y) + d′(y, z)

(c) Show that both of the above metrics are equivalent to d.

Solution. The balls of radii < t form a basis in any metric topology, pro-
vided t > 0. These are the same in the d and d′ metrics.
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Since a ≤ b if and only if a
1+a ≤

b
1+b , we have

Bd(x, ε) = Bd′′(x,
ε

1 + ε
).

Therefore the d and d′′ metrics have the same open balls, hence give the
same topology.

Exercise 6. (a) Show that the following are metrics on Rn:

(i) The Euclidean metric, d(x, y) =
∣∣x− y∣∣. Cf. [Mun, §20, #9] for hints.

Solution. We check the triangle inequality only since the other prop-
erties are trivial. It’s enough to show that

d(x, z)2 ≤ d(x, y)2 + 2d(x, y)d(y, z) + d(y, z)2.

Let a = x− y, b = y − z, and c = x− z. Then we are trying to show∣∣a+ b
∣∣2 ≤ (

∣∣a∣∣+
∣∣b∣∣)2.

Expanding we see that this is equivalent to the Cauchy–Schwarz in-
equality:

a · b ≤
∣∣a∣∣∣∣b∣∣.

One way to prove this is to remark that a · b =
∣∣a∣∣∣∣b∣∣ cos(θ) where θ

is the angle between the vectors a and b and
∣∣cos(θ)

∣∣ ≤ 1.

(ii) The sup metric, d′(x, y) = supni=1

{∣∣xi − yi∣∣}.

Solution. We have d′(x, y) = sup
{∣∣xi − yi∣∣} = sup

{∣∣yi − xi∣∣} =

d′(y, x) and if d′(x, y) = 0 then
∣∣xi − yi∣∣ = 0 for all i, i.e., x = y. We

also have

d′(x, z) = sup
{∣∣xi − zi∣∣} ≤ sup

{∣∣xi − yi∣∣+
∣∣yi − zi∣∣}

≤ sup
{∣∣xi − yi∣∣}+ sup

{∣∣yi − zi∣∣} = d′(x, y) + d′(y, z).

(iii) The metric d′′(x, y) =
∑n
i=1

∣∣xi − yi∣∣.
Solution. If d′′ is symmetric because

∣∣xi − yi∣∣ is symmetric in x and

y; if d′′(x, y) = 0 then all of the positive numbers
∣∣xi − yi∣∣ must be

zero so xi = yi for all i. Triangle inequality:

d′′(x, z) =

n∑
i=1

∣∣xi − zi∣∣ ≤ n∑
i=1

∣∣xi − yi∣∣+
∣∣yi − zi∣∣

= d′′(x, y) + d′′(y, z).
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(b) Show that all of the metrics described above are equivalent.

Solution. We have d′(x, y) ≤ d(x, y) ≤ d′′(x, y) ≤ nd′(x, y).

Exercise 7. Show that if d and d′ are two equivalent2 metrics on the same set ←2

X then

(a) a sequence in X converges in d if and only if it converges in d′, and

(b) the limits are the same.

Solution. A continuous function takes convergent sequences to convergent se-
quences and preserves limits. The identity function gives a continuous function
(X, d)→ (X, d′) that is its own continuous inverse (X, d′)→ (X, d).

Solution. Here’s another solution: convergence of a sequence to a point is a
topological property. Equivalent metrics give rise to the same topology.

Comments. Many of you made this proof more complicated than necessary by
trying to apply the definition of convergence directly.

Exercise 8. Let Q be the set of rational numbers and fix a prime number p.
Every non-zero rational number can be written in a unique way as apn where
n is an integer and a is a rational number that is prime to p.3 Define∣∣apn∣∣

p
= p−n∣∣0∣∣

p
= 0.

Show that
d(x, y) =

∣∣x− y∣∣
p

defines a metric on Q.

Solution. First, the only rational number z such that
∣∣z∣∣

p
= 0 is z = 0 so if∣∣x− y∣∣

p
= 0 then x = y. If x − y = apn then y − x = −apn and

∣∣x− y∣∣
p

=∣∣y − x∣∣
p
.

Now we check the triangle inequality: Suppose that x−y = apn and y−z =
bpm so that d(x, y) = p−n and d(y, z) = p−m. Then

d(x, z) =
∣∣apn + bpm

∣∣
p
.

The value depends on whether n or m is larger and by symmetry we may as
well assume that n ≤ m. Then

d(x, z) =
∣∣pn(a+ bpm−n)

∣∣
p
.

2typo corrected—the word “equivalent” was missing; thanks Shawn
3This means that a = x

y
where x and y are integers that are not divisible by p.
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I claim that a+ bpm−n is of the form cpk for some k ≥ 0 and c prime to p. This
will imply that d(x, z) =

∣∣cpn+k∣∣
p

= p−n−k which is less than d(x, y)+d(y, z) =

p−n + p−m.
Let’s check the claim: Write a = a1

a2
and b = b1

b2
. Then

a1
a2

+
b1
b2
pm−n =

a1b2 + a2b1p
m−n

a2b2
.

The denominator is a product of numbers prime to p so is prime to p. The
numerator is an integer so it is divisible by a non-negative power of p. This
proves the claim.

Comments. A very common mistake was to attempt to prove that
∣∣x+ y

∣∣
p

=

max
{∣∣x∣∣

p
,
∣∣y∣∣

p

}
by writing x = apn and y = bpn, assuming by symmetry that

n ≤ m, and writing∣∣x+ y
∣∣
p

=
∣∣(a+ bpm−n)pn

∣∣
p

=
∣∣a+ bpm−n

∣∣
p
p−n.

Then saying that a+ bpm−n is prime to p. Of course, it is prime to p if m > n,
but if m = n it very well may be divisible by p.

Note also that
∣∣x+ y

∣∣
p

= max
{∣∣x∣∣

p
,
∣∣y∣∣

p

}
is inequivalent with the fact that∣∣x+ (−x)

∣∣
p

= 0.

Exercise 9. [Mun, §20, #3]. Let X be a metric space with metric d.

(a) Show that d : X ×X → R is continuous.

Solution. Suppose that (x, y) ∈ X ×X. Supposing that ε > 0 we would
like to show that there is an open neighborhood U of (x, y) such that∣∣d(x′, y′)− d(x, y)

∣∣ < ε for (x′, y′) ∈ U . For U we take the open set
U = B(x, ε/2)×B(y, ε/2) consisting of all (x′, y′) such that d(x, x′) < ε/2
and d(y, y′) < ε/2. For all (x′, y′) ∈ U we have

d(x′, y′) ≤ d(x, y) + d(x, x′) + d(y, y′) ≤ d(x, y) +
ε

2
+
ε

2
= d(x, y) + ε

and similarly, with the roles of (x′, y′) and (x, y) reversed, we have d(x, y) ≤
d(x′, y′) + ε. Therefore

∣∣d(x, y)− d(x′, y′)
∣∣ < ε.

(b) Let X ′ be a topological space with the same underlying set as X. Show
that if d : X ′ × X ′ → R is continuous then the topology of X ′ is finer
than the topology of X.

Solution. We must show that for any x ∈ X and any ε > 0 the ball
Bd(x, ε) is open in X ′. Consider the composition of maps

X ′
f // X ′ ×X ′ d // R
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where f(y) = (x, y). Let g : X ′ → X ′ be the composition d ◦ f . Then
f is continuous and d is continuous by assumption so g is continuous.
Therefore g−1((−∞, ε)) is open in X ′. But g−1((−∞, ε)) consists of all y ∈
X ′ such that d(f(y)) < ε and d(f(y)) = d(x, y). That is g−1((−∞, ε)) =
Bd(x, ε) is open in X ′.

Exercise 10. Suppose that X is a topological space, x is a point in X, and
x1, x2, . . . is a sequence of points in X. Does either of the following statements
imply the other? Are they equivalent?

(i) The point x is contained in the closure of the set S =
{
x1, x2, . . .

}
but not

in S itself.

(ii) The point x is the limit of the sequence x1, x2, . . ..

Give proofs or counterexamples to justify your answer.

Solution. Neither implies the other. The sequence (n, sin(1/n)) in R2 does not
converge to any limit, but the closure of

{
(n, sin(1/n)

}
contains the interval{

0
}
× [−1, 1]. Also, the constant sequence xn = x has limit x but x is contained

in
{
xn
∣∣n ∈ Z

}
.

Exercise 11. Let X be a topological space. Call a subset S of X closed in the
sequential convergence (sc) topology if, whenever x1, x2, . . . is a sequence in S
possessing a limit in X, the limit lies in S.

(a) Show that this is a topology on X.

Solution. Suppose
{
Si
}

is a collection of sc-closed subsets of X. We want
to show that

⋂
Si is also sc-closed. Let x1, x2, . . . be a sequence of elements

of
⋂
Si and suppose that x ∈ X is a limit of the xi. Then x lies in each Si

and therefore in their intersection. Therefore sc-closed subsets are closed
under arbitrary intersection.

Now suppose that S and T are sc-closed subsets of X. Suppose that
x1, x2, . . . is a sequence of elements of

⋃
Si and suppose that x ∈ X is a

limit of the xi. We wish to show that x ∈ S ∪ T . Each xi must come
either from S or T . Therefore one of S or T must contain infinitely many
of the xi. Let us suppose it is S, the argument being essentially the same
if it is T , and let y1, y2, . . . be the subsequence of those xi that lie in S.
Recall that for the xi to converge to x means that every open U ⊂ X
containing x also contains all but finitely many of the xi. Therefore it
must also contain all but finitely many of the yi as well. Thus the yi form
a subsequence of the xi that also converges to x. Since S is closed, this
means that x ∈ S ⊂ S ∪ T .

(b) Let X ′ be the topological space whose underlying set is X, but given the
sc topology. Let f be the map X ′ → X 4 whose underlying function is ←4

the identity. Show that f is continuous.

4typo corrected here
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Solution. Let S be closed in X (in the usual topology). Then S contains
the limit of every sequence drawn from S so S is also sc-closed. Every
closed set is also sc closed, so the sc-topology is finer than the given
topology and the map X ′ → X is therefore continuous.

(c) Demonstrate that the sc topology is not always the same as the original
topology. You may want to use the following sequence of steps:

(i) Let Y be an uncountable well-ordered set whose ordinality is equal to
the first uncountable ordinal. Note that Y has no maximal element.
Let X = Y ∪

{
∞
}

be the union of Y and a maximal element. Declare
that U ⊂ X is open if U = ∅ or if there is some y ∈ Y such that
U =

{
x ∈ X

∣∣x ≥ y}.5 Show that this is a topology on X. ←5

(ii) Let U be the complement of ∞ in X. Show that U is not closed.

(iii) Show that the subset U of the last part is closed in the sc topology.
(Hint: use the fact that for any increasing sequence of countable
ordinals x1 < x2 < x3 < · · · there is a countable ordinal y such that
xi < y for all i; you can prove this fact by observing that a countable
union of countable sets is countable.)

Solution. We would like to find a topological space X with a subset S
that contains the limit of every sequence in S but is still not closed in X.
Let X = ℵ1 ∪

{
∞
}

with the convention that ∞ > x for all x ∈ ℵ1. For
each x ∈ X, let Ux be the set of all z ∈ X with z > x. Declare that the
Ux are open for all x ∈ X.

It is obvious that an arbitrary union of open subsets is open. Also, Ux ∩
Uy = U

max
{
x,y
} so finite unions of open subsets are also open. Therefore

this is a topology on X.

Let U be the complement of ∞ in X. Then U = X. Indeed, Z ⊂ X is
closed if and only if there exists an x ∈ X such that Z consists of all z ≤ x
in X. There is no such element in U so U is not closed. As it is missing
only one element of X, its closure must be all of X.

Now, consider a sequence x1, x2, . . . in U . I claim that this sequence
cannot converge to ∞. Indeed, each xi is a countable ordinal. There is
therefore a countable ordinal that is larger than all of them (a countable
union of countable sets being countable). Call this element y. Then Uy
does not contain any of the xi but still is an open neighborhood of ∞ in
X. Therefore U is sc-closed but not closed.

(d) Show that the sc topology is the same as the original topology if X satisfies
the first countability axiom (each point of X has a countable basis of open
neighborhoods).

5this was not phrased correctly before; thanks James Van Meter for this observation and
clarification suggestions
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Exercise 12. [Mun, §20, #6]. Let x = (x1, x2, . . .) be an element of Rω and
ε ∈ (0, 1) a real number. Define

U(x, ε) = (x1 − ε, x1 + ε)× (x2 − ε, x2 + ε)× · · · .

(a) Show that U(x, ε) 6= Bd(x, ε) where d is the uniform metric on Rω. (Hint:
show that U(x, ε) is not even open!)

Solution. Consider the point y with coordinates yn = xn + n−1
n ε. Then

y ∈ U(x, ε) but we show that U(x, ε) contains no open neighborhood of
y. Indeed, for any δ > 0, choose a positive k such that δ > ε

k . If n ≥ k
then yn + ε

k > ε so the point z with coordinates zn = yn + ε
k is in U(y, δ)

but is not in U(x, ε).

(b) Prove that6 ←6

Bd(x, ε) =
⋃
δ<ε

U(x, δ).

Solution. If y ∈ U(x, δ) for some δ < ε then sup
{∣∣yn − xn∣∣} ≤ δ. There-

fore U(x, δ) ⊂ Bd(x, ε) for all δ < ε, which proves one inclusion.

Conversely, if y ∈ Bd(x, ε) then sup
{∣∣xn − yn∣∣} < ε so there is some δ < ε

such that
∣∣xn − yn∣∣ < δ for all n. Therefore y ∈ U(x, δ). This proves the

reverse inclusion.

Exercise 13. Let X be a metric space. A Cauchy sequence in X is a sequence
x1, x2, . . . such that for every ε > 0 there is a positive integer N having the
property that d(xn, xm) < ε for every n,m ≥ N .

(a) Let X ′ be the set of Cauchy sequences in X. Define a relation on X ′ by
which x1, x2, . . . is related to y1, y2, . . . if, for any ε > 0, there exists a
positive integer N such that d(xn, yn) < ε for all n ≥ N . Show that this
is an equialence relation.

Solution. Reflexivity and symmetricity are evident so they are omitted. If
x ∼ y ∼ z then there exist positive integersN andM such that d(xn, yn) <
ε/2 for n ≥ N and d(yn, zn) < ε/2 for n ≥M . Then for n ≥ max

{
N,M

}
,

d(xn, zn) ≤ d(xn, yn) + d(yn, zn) = ε.

Thus ∼ is transitive.

(b) Let x1, x2, . . . and y1, y2, . . . be two elements of X ′. Define

d((x1, x2, . . .), (y1, y2, . . .)) = lim
n→∞

d(xn, yn).

6typo corrected in the equation below; thanks Paul Lessard
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(c) Show that this is a well-defined function on X ′×X ′. (Show that the limit
exists.)

Solution. We show that the sequence is Cauchy: choose N such that
d(xn, xm) < ε/2 for n,m ≥ N , and d(yn, ym) < ε/2 for n,m ≥ N . Then
for n,m ≥ N we have

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn) < d(xm, ym) + ε

d(xm, ym) ≤ d(xn, xm) + d(xn, yn) + d(yn, ym) < d(xn, yn) + ε.

Therefore ∣∣d(xn, yn)− d(xm, ym)
∣∣ < ε

and the sequence (d(xn, yn))n∈N is Cauchy, hence has a limit.

(d) Show that this function is actually well-defined on the equivalence classes
in X and makes X into a metric space.

Solution. From the definition, x ∼ y if and only if lim d(xn, yn) = 0. It is
immediate that d(x, y) = d(y, x). We also have

d(x, z) = lim d(xn, zn) ≤ lim(d(xn, yn) + d(yn, zn)) = d(x, y) + d(y, z).

Thus if x ∼ y we have d(x, z) ≤ d(x, y) + d(y, z) = d(y, z) and similarly
d(y, z) ≤ d(x, z). Therefore d(x, z) = d(y, z) and d is well-defined on
equivalence classes. Along the way we have also demonstrated that d is a
metric on X.

(e) Show that two sequence x1, x2, . . . and y1, y2, . . . are in the same equiva-
lence class in X ′ if and only if d((x1, x2, . . .), (y1, y2, . . .)) = 0.

Solution. Shown above.

(f) Let X be the set of equivalence classes in X ′. Let i : X → X that sends
x ∈ X to the equivalence class of the sequence x, x, x, . . .. Show that i is
injective and that its image is dense in X.

Solution. Suppose d(i(x), i(y)) = 0. Then lim d(i(x)n, i(y)n) = 0. But
d(i(x)n, i(y)n) is the constant sequence with value d(x, y) so d(x, y) = 0,
hence x = y because d is a metric on X. (It is also immediate that d is
continuous because d(i(x), i(y)) = d(x, y).)

If x is a Cauchy sequence in X representing an element of X then the
sequence of points i(xn) have limit x in X. Indeed,

lim
n→∞

d(i(xn), x) = lim
n

lim
m
d(i(xn), xm) = lim

n,m→∞
d(xn, xm)

which is zero because the sequence is Cauchy.
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X is known as the completion of the metric space X.

Exercise 14. A pre-order on a set S is a relation ; that is reflexive and
transitive. That is x; x for all x ∈ S and if x; y ; z then x; z.

(a) An element x of a topological space X is said to specialize to y ∈ S if y is
contained in the closure of the set

{
x
}

. We write x; y to mean that y is
a specialization of x. Show that a closed set contains the specializations
of all its elements. A set that contains all the specializations of all its
elements is said to be closed under specialization.

Solution. Suppose S is closed, x ∈ S, and x; y. Then y ∈
{
x
}

, which is
contained in S because S is closed. Therefore y ∈ S.

(b) Show that a subset of a finite topological space is closed if and only if
it is closed under specialization.

Solution. Suppose S ⊂ X and X is finite. We already know that S is
closed under specialization if S is closed so assume that S is closed under
specialization. If x ∈ S then every open neighborhood of x meets S. Let
U be the intersection of all open neighborhoods of x. This is a finite
collection of subsets (since the collection of all open subsets of X is finite)
so it is open. Therefore x has a smallest open neighborhood. Let y 6= x be
an element of this smallest open neighborhood of x that is also contained
in S. Then y ; x for otherwise there would be an open subset of x that
does not contain y. Therefore x ∈ S. We conclude that S = S and S is
closed.

(c) Give an example of an infinite topological space and a subset that is
closed under specialization but is not closed.

Solution. Let X be any topological space in which points are closed. Then
any subset of X is closed under specialization, but we can certainly find
an example of such a space with a non-discrete topology (for example,
X = R).

(d) Show that there is a one-to-one correspondence between topologies on a
finite set S and pre-orders on S. (Hint: Declare that x ; y if y is a
specialization of x.)

Solution. Given a topology on S, define the pre-order as in the hint. We
check that it is a pre-order. Clearly x is in its own closure, so we only
have to check that x ; y ; z implies that x ; z. That is, we have to

check that if y ∈
{
x
}

and z ∈
{
y
}

then z ∈
{
x
}

. But if y ∈
{
x
}

then{
y
}
⊂
{
x
}

so if z is in
{
y
}

then it is in
{
x
}

, as we wish.
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Now suppose that we are given a pre-order on S. We define a topology.
Declare that a subset Z ⊂ S is closed if whenever x ∈ Z, every special-
ization of x is also in Z. To check that this is a topology on S we have to
check the two defining properties: if

{
Zi
}

are closed under specialization
then so are their intersection and union. Indeed, if x ∈

⋂
Zi then x ∈ Zi

for all i; if in addition x; y then y ∈ Zi for all i (since each Zi is closed
under specialization), hence y ∈

⋂
Zi. Similarly, if x ∈

⋃
Zi and x ; y

then x ∈ Zi for some i, so y ∈ Zi (since Zi is closed under specialization),
so y ∈

⋃
Zi as well.

We have defined functions

F :
{

topologies on S
}
→
{

pre-orders on S
}

G :
{

pre-orders on S
}
→
{

topologies on S
}

that we must show are mutually inverses. Supposing that T is a topology
on S we demonstrate that G(F (T )) = T by showing that a subset Z of
S is closed in the topology T if and only if it is closed in the topology
G(F (T )). Since Z ⊂ S is closed in G(F (T )) if and only if it is closed
under specialization, we are supposed to check that Z ⊂ S is closed (in
T ) if and only if it is closed under specialization. We checked this earlier.

Therefore G ◦ F is the identity. We can finish the proof by showing that
F ◦ G is also the identity. That is, given a pre-order ; on S, we have
to show that F (G(;)) =;. By definition, F (G(;)) is the pre-order
� wherein x � y if y lies in the closure of x in the topology G(;).
But by definition, the closure of

{
x
}

in G(;) is the smallest subset of
S that contains x and is closed under specialization. I claim that this
is precisely the set Z of all specializations of x: indeed, if y ∈ Z then
y is a specialization of x, so if z is a specialization of y, then z is also
a specialization of x (transitivity of specialization), hence z ∈ Z. We
conclude from this x � y if and only if y is a specialization of x. In other
words, � and ; are the same pre-order.

(e) Compute the number of topologies on a set with 2 elements, up to re-
ordering of the elements.

Solution. This is the same as the number of ways of pre-ordering a set
with 2 elements:

(a) no relations,

(b) 1 ; 2,

(c) 1 ; 2 and 2 ; 1.

(f) Compute the number of topologies on a set with 3 elements, up to re-
ordering.
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Solution. Again, we count pre-orders:

(a) no relations (indicrete topology),

(b) 1 ; 2,

(c) 1 ; 2 ; 3,

(d) 1 ; 2, 1 ; 3,

(e) 1 ; 3, 2 ; 3,

(f) 1 ; 2, 2 ; 1,

(g) 1 ; 2 ; 3, 2 ; 1, 2 ; 3,

(h) 1 ; 2 ; 3, 3 ; 2,

(i) 1 ; 2 ; 3 ; 2 ; 1 (discrete topology).
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