Math 6210 — Fall 2012 Exam #2

Due Wednesday, December 18. Cite any sources you use (including people with whom you discuss the exam.

Problem 1. Give an example of a continuous surjective¹ map of topological spaces $f : B' \to B$, with $B' \leftarrow_1$ connected,² and a connected covering space $p : E \to B$ such that the covering space $p' : E' = E \times_B B' \to B' \leftarrow_2$ is not connected.

- **Problem 2.** Compute the homology of an oriented surface of genus g (a g-holed torus).
- **Problem 3.** Prove that \mathbf{R}^n is homeomorphic to \mathbf{R}^m if and only if n = m.
- **Problem 4.** (a) Prove that for $n \ge 1$ there is no continuous retraction from the closed ball D^n onto its boundary S^{n-1} .
- (b) Prove that every continuous map $f: D^n \to D^n$ has a fixed point.

Problem 5. Fill in the details of the following proof of the fundamental theorem of algebra.

A continuous map $f: X \to Y$ with the property that $f^{-1}(A)$ is compact for every compact subset $A \subset Y$ is called **proper**.

- (a) Show that if $f: X \to Y$ is proper and Y is Hausdorff³ and has a neighborhood basis of compact subsets \leftarrow_3 then f is closed.
- (b) Let $f : \mathbf{C} \to \mathbf{C}$ be a polynomial map. Show that f is proper.
- (c) Let $f: \mathbf{C} \to \mathbf{C}$ be a *non-constant* polynomial map. Show that f is open.

You may prove this however you like, but a simple proof is possible using the Cauchy integral formula. Another suggested route for a proof:

- (i) Let *a* be an element of **C**. Choose a small loop γ around *a* in **C**. Show that $f(\gamma)$ is a loop around f(a). (Hint: write $f(z) = f(a) + c(z-a)^n(1+(z-a)g(z))^4$ for some $c \in \mathbf{C}$ and polynomial *g*.) \leftarrow_4 Let *U* be the interior of γ and *V* the interior of $f(\gamma)$.
- (ii) Suppose that b is an element of V such that there is no $a' \in U$ with f(a') = b. Obtain a contradiction by considering the map $U \to V \setminus \{b\}$.
- (d) Conclude that a non-constant polynomial map is surjective, and therefore that there is some $z \in \mathbf{C}$ such that f(z) = 0.

Problem 6. [Hat, §2.2, #32] Let X be a topological space and SX its suspension (see [Hat, p. 8]). Prove that $H_n(SX, \mathbb{Z}) \cong H_{n-1}(X, \mathbb{Z})$ for all $n \ge 2$. Determine formulas for $H_1(SX, \mathbb{Z})$ and $H_0(SX, \mathbb{Z})$ in terms of $H_1(X, \mathbb{Z})$ and $H_0(X, \mathbb{Z})$.

References

[Hat] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

¹added this word!

²added this requirement!

 $^{^{3}}$ the Hausdorff hypothesis was omitted originally

⁴corrected the suggestion by adding f(a)