Math 6210 — Fall 2012 Exam #1

Due Friday, October 26. Remember to cite any sources you use.

Problem 1. A topological space X is called path connected if for every pair of points x and y there is a path $f: [0,1] \to X$ such that f(0) = x and f(1) = y.

- (a) Show that if X is path connected then X is connected.
- (b) Let X be the union of $\{(x, y) \in \mathbb{R}^2 \mid x \neq 0, y = \sin(1/x)\}^1$ and $\{(0, 0)\}$. Show that X is connected but \leftarrow_1 not path connected.
- (c) Show that the point (0,0) in the example X above does not have a neighborhood basis of compact subsets of X.

Problem 2. Let X be a topological space. Construct a new space $X' = X \cup \{\infty\}$ in which a subset $U \subset X'$ is called open if it is an open subset of X or if it contains ∞ and its complement is a closed,² compact subset \leftarrow_2 of X.³

- (a) Show that this is a topology on X' and that the inclusion map $X \to X'$ is continuous.
- (b) Show that X' is compact.
- (c) Let Y be the subspace of X' whose underlying set is X. Show that the map $X \to Y$ is a homeomorphism. (Show, in other words, that the subspace topology on X induced from X' is the same as the original topology on X.)

Problem 3. Let $\mathbb{R}P^n$ be the quotient of S^n by the action of $\{\pm 1\}$. Give $\mathbb{R}P^n$ the quotient topology.

- (a) Show that the map $p: S^n \to \mathbf{R}P^n$ is a covering space.
- (b) Prove that $\pi_1(\mathbb{R}P^n, *) \cong \mathbb{Z}/2\mathbb{Z}$ for $n \ge 2$ and $\pi_1(\mathbb{R}P^1, *) \cong \mathbb{Z}.^4$

You may use the following fact without proof: If $n \ge 2$ and $f: [0,1] \to S^n$ is a continuous map then there exists a homotopy h, relative to the endpoints 0 and 1, between f and a continuous map $g: [0,1] \to S^n$ where g is not surjective.⁵

 \leftarrow_4

 \leftarrow_5

Problem 4. Let X be a topological space and PX = Cont([0,1], X) its **path space**. Let $\varphi : X \to PX$ be the function that sends $x \in X$ to the constant path at x. Show that φ is a homotopy equivalence.

Problem 5. Let C be the Cantor set and let I be the unit interval.

- (a) Show that by definition C is the subset of all real numbers in [0, 1] whose ternary (base 3) expansion does not contain a 1 after the decimal point.
- (b) Define a function $f: C \to [0, 1]$ as follows: Suppose that $x \in C$ has ternary expansion $0.a_1a_2a_3\cdots$. Then let f(x) be the number in [0, 1] with *binary* expansion $0.b_1b_2b_3\cdots$ where $b_i = 0$ if $a_i = 0$ and $b_i = 1$ if $a_i = 2$. Show that this function is well-defined, continuous, and surjective. (When showing this is well-defined, remember that the ternary expansion of a number is not unique!)
- (c) Prove that $C \times C$ and C are homeomorphic. (Hint: use something like $g(0.a_1a_2a_3\cdots, 0.b_1b_2b_3\cdots) = 0.a_1b_1a_2b_2a_3b_3\cdots$, but be careful to make sure it is well defined.)

²correction: "closed" forgotten originally; thanks Dmitro

¹correction: added the hypothesis $x \neq 0$, which was omitted before; thanks Megan

³This problem had quite a few issues. I couldn't find a reasonable way to salvage part (d), so I deleted it.

⁴correction: separated the case n = 1; thanks Megan

⁵clarification about what is supposed not to be surjective; thanks Jim

- (d) Let $g: C \to C \times C$ be a homeomorphism. Show that $h = (f \times f) \circ g$ is surjective.
- (e) Extend h to a continuous function $I \to I^2$. (Hint: use linear interpolation.)
- (f) Prove that there is a continuous surjection from I to I^n for all $n\geq 0.$
- (g) Conclude that there is also a continuous surjection from S^1 to S^n for all n.