
Math 6210 — Fall 2012

Exam #1

Due Friday, October 26. Remember to cite any sources you use.

Problem 1. A topological space X is called path connected if for every pair of points x and y there is a
path f : [0, 1]→ X such that f(0) = x and f(1) = y.

(a) Show that if X is path connected then X is connected.

Solution. Suppose X = Y q Z. Suppose that Y is non-empty and pick y ∈ Y . For any x ∈ X there is
a path f : [0, 1] → X connecting x to y. Since f is continuous and [0, 1] is connected, the image of f
is a connected subset of X, therefore is contained in Y . But then x is contained in Y . This holds for
all x ∈ X so X = Y and Z = ∅. This applies to any decomposition of X and Y q Z, so X must be
connected.

(b) Let X be the union of {(x, y) ∈ R2
∣∣ x 6= 0, y = sin(1/x)}1 and {(0, 0)}. Show that X is connected but ←1

not path connected.

Solution. Let U = X∩(−∞, 0)×R. The sequence (− 1
kπ , 0) in U converges to (0, 0) so U = U∪{(0, 0)} =

X ∩ (−∞, 0]×R.

Since U is the continuous image of the function f(t) = (t, sin(1/t)) it is connected. Therefore its
closure is connected [?, 7 (c)]. The same argument shows that V = X ∩ [0,∞) is connected. But then
U ∩ V = {(0, 0)} is non-empty so X = U ∪ V is connected by [?, 7 (a)].

Now we show X is not path connected. Suppose there were a path f in X connecting (1/π, 0) to
(0, 0). Since [0, 1] is compact, the image of f is compact, hence closed. Composing with first projection
R2 → R, we see that any path from (1, sin(1)) to (0, 0) must induce a path from 1 to 0 in R. Since
the interval is connected, such a path must be surjective. Therefore, for every x ∈ (0, 1] there must be
some t ∈ [0, 1] such that f(t) = (x, sin(1/x)). In particular, the image of f must contain the points
x = ( 1

π/2+2kπ , 1) for all integers k ≥ 0. But the image of f is supposed to be closed, so it would also

have to contain (0, 1), which is the limit of that sequence of points. Since (0, 1) is not in X, this is a
contradiction.

(c) Show that the point (0, 0) in the example X above does not have a neighborhood basis of compact
subsets of X.

Solution. Let U = (−1/2, 1/2)× (−1/2, 1/2)∩X and suppose (0, 0) ∈ V ⊂ K ⊂ U with V open and K
compact. Then K is a compact subset of R2, hence is closed in R2. Choose a real number y ∈ (0, ε).
Then for each sufficiently large integer k we have 1/2πk ∈ (0, ε) and 1/(π/2 + 2πk) ∈ (0, ε). By the
intermediate value theorem, there is therefore some xk ∈ (1/(π/2 + 2πk), 1/2πk) with sin(1/xk) = y.
We therefore have a sequence (xk, y) ∈ K with limit (0, y), which does not converge to an element of
X. Therefore K is not closed in R2, hence is not compact.

Problem 2. Let X be a topological space. Construct a new space X ′ = X ∪{∞} in which a subset U ⊂ X ′
is called open if it is an open subset of X or if it contains∞ and its complement is a closed,2 compact subset ←2

of X.3 ←3

(a) Show that this is a topology on X ′ and that the inclusion map X → X ′ is continuous.

1correction: added the hypothesis x 6= 0, which was omitted before; thanks Megan
2correction: “closed” forgotten originally; thanks Dmitro
3This problem had quite a few issues. I couldn’t find a reasonable way to salvage part (d), so I deleted it.



Solution. Since ∅ is an open subset of X it is an open subset of X ′. Since the complement of X ′ is
the empty set, which is a compact subset of X, the set X ′ is open as well.

Suppose that Ui are open subsets of X ′. Let U =
⋃
Ui. If all Ui are contained in X then their union

is also contained in X and is open because a union of open sets is open. If on the other hand ∞ ∈ U
then ∞ ∈ Uj for some j. Therefore X rUj is compact. Then X rU =

⋂
(X rUi) is a closed subset of

X that is contained in X r Uj . But X r Uj is compact, so X r U is compact (and closed, as already
remarked). Therefore U is an open subset of X by definition.

Finally, suppose that U and V are open subsets of X ′. Then X r (U ∩ V ) = (X r U) ∪ (X r V ) is a
finite union of closed, compact subsets of X, hence is closed and compact.

Now we check that i : X → X ′ is continuous. Suppose that U ⊂ X ′ is open. Then either U ⊂ X, in
which case i−1(U) = U , and U is an open subset of X. If U contains ∞ then X r U ⊂ X is closed in
X, so i−1(U) = U ∩X is open in X. Thus i−1(U) is open in X for all open U ⊂ X ′. This shows that
i is continuous.

(b) Show that X ′ is compact.

Solution. Suppose X ′ =
⋃
Ui. We must have ∞ ∈ Uj for some j. Let Z = X r Uj . By definition

of the open subsets of X ′, the subset Z is compact. Then the Ui cover Z, and since Z is compact,
finitely many of the Ui—say Ui1 , . . . , Uik suffice. Then Uj and Ui1 , . . . , Uik together constitute a finite
subcover of {Ui}.

(c) Let Y be the subspace of X ′ whose underlying set is X. Show that the map X → Y is a homeomor-
phism. (Show, in other words, that the subspace topology on X induced from X ′ is the same as the
original topology on X.)

Solution. We already know that the mapX → Y is a continuous bijection. On the other hand, it is open
because if U ⊂ X is open then U ⊂ X ′ is open. An open, continuous bijection is a homeomorphism.

Problem 3. Let RPn be the quotient of Sn by the action of {±1}. Give RPn the quotient topology.

(a) Show that the map p : Sn → RPn is a covering space.

Solution. Choose a cover of Sn by open subsets U with the property that −U ∩U = ∅. Then for each
such U we have p−1(p(U)) = −U ∪ U , which is open in Sn, so p(U) is open in RPn. Therefore the
sets p(U) form an open cover RPn. Moreover, for each such U , the map U → p(U) is a bijection: it is
surjective by definition and injective because U ∩−U = ∅. Therefore p−1(p(U)) ∼= {±1}× p(U). This
shows that p is a covering space.

(b) Prove that π1(RPn, ∗) ∼= Z/2Z for n ≥ 2 and π1(RP1, ∗) ∼= Z.4 ←4

Solution. If n ≥ 2 then Sn is a simply connected covering space of RPn so π1(RPn) acts simply
transitively on p−1(∗), which is a 2-element set. Therefore π1(RPn) is a group with 2 elements, and
there is only one such up to isomorphism.

If n = 1 we construct a homeomorphism S1 ∼= RP1. Consider the map q : S1 → S1 given by x 7→ x2

when S1 is viewed as the set of complex numbers of absolute value 1. Note that we have a commutative
diagram

R
f //

g
  @

@@
@@

@@
@ S1

q

��
S1

4correction: separated the case n = 1; thanks Megan



where the two maps f, g : R → S1 are both open quotient maps. This means that the map S1 → S1

is a quotient map (q−1(U) is open iff f−1q−1(U) is open iff U is open). It also implies that q is
open, since q(U) = q(f(f−1(U))) and qf is open. Now, note that if p(x) = p(y) then q(x) = q(y)
(i.e., x = ±y if and only if x2 = y2). Therefore there is a well-defined function r : S1 → RP1 such
that rq = p. By the universal property of the quotient topology, r is continuous. It is also open:
r(U) = r(q(q−1(U))) = p(q−1(U)) is the image of the open set q−1(U) under the open map p.

This is injective: say r(x) = r(y); then pick x′, y′ such that x = q(x′) and y = q(y′); then p(x′) =

rq(x′) = rq(y′) = p(y′) so x′ = ±y′ so x′
2

= y′
2

so x = q(x′) = q(y′) = y. It is also surjective: if
x ∈ RP1 then x = p(x′) for some x′ ∈ S1 so x = rq(x′) so x is in the image of r.

Thus r is an open, continuous bijection, hence a homeomorphism. It follows that π1(RP1) ∼= π1(S1) =
Z.

You may use the following fact without proof: If n ≥ 2 and f : [0, 1] → Sn is a continuous map then there
exists a homotopy h, relative to the endpoints 0 and 1, between f and a continuous map g : [0, 1] → Sn

where g is not surjective.5 ←5

Problem 4. Let X be a topological space and PX = Cont([0, 1], X) its path space. Let ϕ : X → PX be
the function that sends x ∈ X to the constant path at x. Show that ϕ is a homotopy equivalence.

Solution. We should first verify that ϕ is continuous. This is because the projection map X × [0, 1] → X :
(x, t) 7→ x is continuous. Therefore by the universal property of the path space, the map ϕ : X → PX
sending x to the function ϕ(x) with ϕ(x)(t) = x for all t ∈ [0, 1] is a continuous function.

Let ψ : PX → X be the function sending a path f : [0, 1] → X to f(0). We verify ψ is continuous: by
the universal property of PX (which applies because [0, 1] is compact and Hausdorff), there is a continuous
map PX × [0, 1]→ X sending (f, t) to f(t) (corresponding to the identity map PX → PX). We also have
a continuous map PX → PX × [0, 1] sending f to (f, 0) by the universal property of the product. The map
ψ is the composition of these two maps.

Now, we have ψ ◦ ϕ(x) = x so what we have to check is that ϕ ◦ ψ is homotopic to the identity. Let
F : PX×[0, 1]→ X be the universal map described above. Consider the map α : [0, 1]×[0, 1]→ [0, 1] defined
by α(s, t) = st. Then H = F ◦(id×α) defines a continuous map H : PX× [0, 1]× [0, 1]→ X with H(f, s, t) =
f(st). By the universal property of the path space, we obtain a continuous map h : PX × [0, 1]→ PX with
h(f, s)(t) = H(f, s, t) = f(st). But now, h(f, 0)(t) = f(0) = ϕ ◦ ψ(f)(t) and h(f, 1)(t) = f(t) = id(f)(t).
Therefore h is a homotopy between ϕ ◦ ψ and the identity.

Problem 5. Let C be the Cantor set and let I be the unit interval.

(a) Show that by definition C is the subset of all real numbers in [0, 1] whose ternary (base 3) expansion
does not contain a 1 after the decimal point.

Solution. Let ω = Z>0 be the set of positive integers. Give the set {0, 2} the discrete topology. Let
X = {0, 2}ω with the product topology. Consider the map ϕ : X → [0, 1] defined by

ϕ(a1, a2, . . .) =

∞∑
k=1

ak
3k
.

Lemma. The map ϕ defined above is continuous and defines a homeomorphism from {0, 2}ω onto C.

Proof. Let a = (ak)k∈ω be a point of X. To prove continuity, we must show that, given any ε > 0,
there is an open neighborhood U of (ak)k∈ω such that if b = (bk)ω ∈ U then

∣∣ϕ(a)− ϕ(b)
∣∣ < ε. Now,

choose an N such that 3−N < ε. Let U be the set of b = (bk)k∈ω such that bk = ak for all k ≤ N .
Note that U is open by definition of the product topology. Then

∣∣ϕ(a)− ϕ(b)
∣∣ =

∣∣ ∞∑
k=N+1

ak − bk
3k

∣∣ ≤ ∞∑
k=N+1

2

3k
= 3−N .

5clarification about what is supposed not to be surjective; thanks Jim



Now we show that the image of f is contained in C. The Cantor set has the following recursive
structure: C =

⋂∞
n=0 Cn where C0 = [0, 1] and Cn+1 = 1

3Cn ∪ ( 2
3 + 1

3Cn). We will show by induction
that for each a ∈ X we have ϕ(a) ∈ Cn for all n. This is obvious for n = 0. Assume then that
ϕ(a) ∈ Cn for all a ∈ X. Let b be the element of X obtained by shifting: bk = ak+1 for all k ∈ ω.
Then ϕ(b) ∈ Cn by induction, and ϕ(a) is either 1

3ϕ(b) or it is 2
3 + 1

3ϕ(b). Either way, ϕ(a) is in either
1
3Cn or 2

3 + 1
3Cn so it is in Cn+1.

Since C has the subspace topology from [0, 1], the universal property of the subspace topology implies
that ϕ defines a continuous mapX → C. To show it is bijective, we now construct an inverse g : C → X.
We define g by induction. Let x0 = x. Inductively define g(x)n = 0 if xn ∈ [0, 1/3] and g(x)n = 2 if
xn ∈ [2/3, 1]; set xn = 3xn − g(x)n. Note that by the inductive structure of the Cantor set, xn ∈ C
for all n, so this definition is legitimate. It is easy to verify that ϕ and g are inverse to one another, so
I will omit this.

Finally, we must check that g is continuous (or equivalently, that ϕ is open). Let a be a point of
X. There is a basis of open neighborhoods of a of the form UN = {b ∈ X

∣∣ ak = bk for k ≤ N}. But
g−1(UN ) = ϕ(UN ) is the interval [ N∑

k=1

ak
3k
,

1

3N
+

N∑
k=1

ak
3k

]
∩ C.

This is open in C, since it coincides with(
− 1

3N
+

N∑
k=1

ak
3k
,

2

3N
+
∑

k = 1N
ak
3k

)
∩ C.

It now follows immediately that every element of the Cantor set can be expressed uniquely as
∑∞
k=1

ak
3k

with ak ∈ {0, 2} for all k.

(b) Define a function f : C → [0, 1] as follows: Suppose that x ∈ C has ternary expansion 0.a1a2a3 · · · .
Then let f(x) be the number in [0, 1] with binary expansion 0.b1b2b3 · · · where bi = 0 if ai = 0 and
bi = 1 if ai = 2. Show that this function is well-defined, continuous, and surjective. (When showing
this is well-defined, remember that the ternary expansion of a number is not unique!)

Solution. Since the ternary expansion of an element of the Cantor set is unique the function indicated
above is unique. We compose f with the homeomorphism ϕ : X → C defined in the lemma to get a
map f ◦ ϕ : X → [0, 1] which is continuous if and only if f is. But

f ◦ ϕ(a) =

∞∑
k=1

ak/2

3k
.

The proof of the continuity of f goes through exactly as in the proof of the lemma.

(c) Prove that C × C and C are homeomorphic. (Hint: use something like g(0.a1a2a3 · · · , 0.b1b2b3 · · · ) =
0.a1b1a2b2a3b3 · · · , but be careful to make sure it is well defined.)

Solution. Note that C × C ∼= X × X = {0, 2}ω × {0, 2}ω. We therefore wish to show that {0, 2}ω ×
{0, 2}ω ∼= {0, 2}ω.

First observe that for any topological space Y and any sets A and B, we have Y A × Y B ∼= Y AqB .
Therefore

{0, 2}ω × {0, 2}ω ∼= {0, 2}ωqω.
But now we observe that as sets ω and ω q ω are in bijection: they are both countably infinite.



Solution. Here is a second solution that is more direct.

Let g be as defined above. It is well-defined since the ternary expansion of an element of C is unique.
It is obviously bijective. We only need to check that it is open and continuous. For this it will be
preferable to work with a convenient subbasis for the topology of C.

Lemma. Sets of the form [a, a+ 3−N ]∩C, where a =
∑N
k=1

ak
3k

and ak ∈ {0, 2} for all k, form a basis
for the topology of C.

Proof. First note that the sets [a, a+3−N ] are all open because if a is of the form above then there is an
ε > 0 such that (a−ε, a+3−N+ε)∩C = [a, a+3−N ]. If x =

∑∞
k=1

xk

3k
is in C then we can take xk ∈ {0, 2}

for all k. Let ε > 0 be any positive number. Note that for each N , we have x ∈ [xN , xN + 3−N ] where

xN =
∑N
k=1

xk

3k
. If we choose N large enough then 3−N < ε

2 so [xN , xN + 3−N ] ⊂ B(x, ε).

Note that the set [a, a+ 3−N ] of the lemma consists of all elements x =
∑ xk

3k
of C such that xk = ak

for k ≤ N . To show that g is continuous, we have to show that g−1([a, a + 3−N ]) is open in C × C.
But g−1([a, a+ 3−N ]) consists of all (

∑ xk

3k
, yk
3k

) such that xk = a2k−1 for 2k− 1 ≤ N and yk = a2k for
2k ≤ N . Thus g−1([a, a+ 3−N ]) = [b, b+ 3−M ]× [c, c+ 3−L] where M is the largest integer such that
2M − 1 ≤ N and L is the largest integer such that 2L ≤ N . By the lemma and the definition of the
product topology, this is an open subset of C × C. Therefore g is continuous.

Conversely, note that the set [b, b + 3−M ] × [c, c + 3−M ] with b =
∑M
k=1

bk
3k

and c =
∑M
k=1

ck
3k

form a
basis for the topology of C × C. And we have

g([b, b+ 3−M ]× [c, c+ 3−M ]) = [g(b, c), g(b, c) + 3−2M ]

so g is also open.

(d) Let g : C → C × C be a homeomorphism. Show that h = (f × f) ◦ g is surjective.

Solution. Since h is the composition of a surjection f × f and a bijection g it must be surjective.

(e) Extend h to a continuous function I → I2. (Hint: use linear interpolation.)

Solution. Since C is closed in I, the Tietze extension theorem applies to give an extension of h : C → I2

to h̃ : I → I2. However, we didn’t prove the Tietze extension theorem in class, so I’ll give some direct
arguments below.

Solution. Since C is compact, for each x ∈ I that is not in C there is a greatest y ∈ C such that y ≤ x
and a least z ∈ C such that x ≤ z. Define

h̃(x) =
x− y
z − y

h(z) +
z − x
z − y

h(y).

This agrees with the given function h̃ on C. We only have to show that h is continuous.

We show that h is continuous at each point of I. If x ∈ I rC then h̃ is linear near x so h̃ is obviously
continuous there. We therefore only need to check h̃ is continuous on C.

Suppose x ∈ C and ε > 0. Since h is continuous, we can choose δ > 0 such that if y ∈ C and∣∣x− y∣∣ < δ then
∣∣h(x)− h(y)

∣∣ < ε
2 . If we choose δ so that x − δ and x + δ do not lie in C then

C∩(x−δ, x+δ) = C∩ [x−δ, x+δ] is a closed subset of I, hence is compact. Therefore C∩(x−δ, x+δ)
has a least element, which we call a, and a greatest element, b. Let a′ be the greatest element of C that
is less than a and let b′ be the smallest element of C greater than b (which exist for the same reason

we could find a and b). Since h̃ is continuous on [a′, a] we can find α > 0 such that if y ∈ (a − α, a]



then
∣∣h̃(y)− h(a)

∣∣ < ε
2 . Likewise, we can find β such that if y ∈ [b, b+β) then

∣∣h̃(y)− h(b)
∣∣ < ε

2 . Thus
if y ∈ (a− α, b+ β) then either y ∈ (a− α, x] or y ∈ [x, b+ β). In the former case,∣∣h̃(y)− h̃(x)

∣∣ ≤ ∣∣h̃(y)− h̃(a)
∣∣+
∣∣h(a)− h(x)

∣∣
≤ ε

2
+
ε

2
< ε.

The case y ∈ [x, b + β) is essentially identical. Therefore h̃ is continuous at x. As this holds for all

x ∈ C, and we have already shown h̃ continuous for x ∈ I r C, it follows that h̃ is continuous.

(f) Prove that there is a continuous surjection from I to In for all n ≥ 0.

Solution. Let h be a continuous surjection from I onto I2. Then the composition

I
h−→ I2

h×id−−−→ I3
h×id−−−→ I4

h×id−−−→ · · · h×id−−−→ In

is a composition of continuous surjections, hence is a continuous surjection from I onto In.

(g) Conclude that there is also a continuous surjection from S1 to Sn for all n.

Solution. Note that h(0) and h(1) both lie on the boundary of I2. Therefore if hn : I → In is the map
constructed in the last part then hn(0) and hn(1) both lie on ∂In. Therefore if p : In → In/∂In = Sn

is the projection then p ◦ hn factors set-theoretically through I/∂I = S1. But by definition of the
quotient topology, this means that the induced function S1 → Sn is continuous. Moreover, because
p ◦hn is surjective (the composition of surjective functions) so must be the induced map S1 → Sn.

Solution. We have a continuous surjection of In onto Sn by collapsing the boundary. We can also find
a continuous surjection S1 → I, e.g., the function f(x, y) = 2x − 1, where we view S1 as a subset of
R2 with coordinates x, y. The composition

S1 → I → In → Sn

is therefore a composition of continuous surjections, hence is a continuous surjection.


