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(e) The general linear group GL(n), under the operation of matrix multiplica-
tion. (GL(n) is the set of all nonsingular n by n matrices, topologized by
considering it as a subset of euclidean space of dimension n? in the obvious
way.)

3. Let H be a subspace of G. Show that if H is also a subgroup of G, then both H
and H are topological groups.

4. Let a be an element of G. Show that the maps fo, g4 : G — G defined by
fax)=a-x and galx)=x-a

are homeomorphisms of G. Conclude that G is a homogeneous space. (This

means that for every pair x, y of points of G, there exists a homeomorphism

of G onto itself that carries x to y.)

5. Let H be a subgroup of G. If x € G, define xH = {x - h | h € H}; this set is
called a left coset of H in G. Let G/H denote the collection of left cosets of H
in G; it is a partition of G. Give G/H the quotient topology.

(a) Show thatifa € G, the map f, of the preceding exercise induces a home-
omorphism of G/H carrying xH to (& - x)H. Conclude that G/H is a
homogeneous space.

(b) Show that if H is a closed set in the topology of G, then one-point sets are
closedin G/H.

(c) Show that the quotient map p : G — G/H is open.

(d) Show that if H is closed in the topology of G and is a normal subgroup of G,
then G/ H is a topological group.

6. The integers Z are a normal subgroup of (R, +). The quotient R/Z is a familiar
topological group; what is it?

7. If A and B are subsets of G, let A - B denote the set of all points a - bforac A
and b € B. Let A~! denote the set of all points a™!, fora € A.

(a) A neighborhood V of the identity element e is said to be symmetric if V =
V-1 If U is a neighborhood of e, show there is a symmetric neighborhood
Vofesuchthat V-V C U. [Hint: f Wisa neighborhood of e, then
W - W—! is symmetric.]

(b) Show that G is Hausdorff. In fact, show that if x # y, there is a neighbor-
hood V of e such that V - x and V - v are disjoint.

(c) Show that G satisfies the following separation axiom, which is called the
regularity axiom: Given a closed set A and a point x not in A, there ex-
ist disjoint open sets containing A and x, respectively. [Hint: There is a
neighborhood V of e suchthat V - x and V - A are disjoint.]

(d) Let H be a subgroup of G that is closed in the topology of G;letp: G —
G/H be the quotient map. Show that G/H satisfies the regularity axiom.
{Hint: Examine the proof of (c) when A is saturated.]

Chapter 3

Connectedness
and Compactness

In the study of calculus, there are three basic theorems about continuous functions
and on these theorems the rest of calculus depends. They are the following: ’

Intermediate value theorem. If f : [a,b] — R is continuous and if r is a real
number between f(a) and f(b), then there exists an element ¢ € {a, b] such that
fleoy=r.

Maximum value theorem. If f : {a, b] — R is continuous, then there exists an
element ¢ € {a, b] such that f(x) < f(c) for every x € [a, b].

Uniform continuity theorem. If f : [a, b] — R is continuous, then given € > 0,
there exists § > 0 such that | f(x1) — f(x2)| < € for every pair of numbers x;, x;
of [a, b] for which |x; — x| < 8.

These theorems are used in a number of places. The intermediate value theorem is
used for instance in constructing inverse functions, such as /x and arcsin x; and the
maximum value theorem is used for proving the mean value theorem for derivatives,
upon which the two fundamental theorems of calculus depend. The uniform continuity
Fheorem is used, among other things, for proving that every continuous function is
integrable.

We have spoken of these three theorems as theorems about continuous functions.
But they can also be considered as theorems about the closed interval [a, b] of real
numbers. The theorems depend not only on the continuity of f but also on properties
of the topological space [a. b].

The property of the space [a, b] on which the intermediate value theorem depends
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148 Connectedness and Compactness Ch. 3

is the property called connectedness, and the property on which the other two depend
is the property called compactness. In this chapter, we shall define these properties for
arbitrary topological spaces, and shall prove the appropriate generalized versions of
these theorems.

As the three quoted theorems are fundamental for the theory of calculus, so are the
notions of connectedness and compactness fundamental in higher analysis, geometry,
and topology—indeed, in almost any subject for which the notion of topological space
itself is relevant.

§23 Connected Spaces

The definition of connectedness for a topological space is a quite natural one. One says
that a space can be “separated” if it can be broken up into two “globs”—disjoint open
sets. Otherwise, one says that it is connected. From this simple idea much follows.

Definition. Let X be atopological space. A separation of X isapair U, V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be connected
if there does not exist a separation of X.

Connectedness is obviously a topological property, since it is formulated entirely
in terms of the collection of open sets of X. Said differently, if X is connected, so is
any space homeomorphic to X.

Another way of formulating the definition of connectedness is the following:

A space X is connected if and only if the only subsets of X that are both
open and closed in X are the empty set and X itself.

For if A is a nonempty proper subset of X that is both open and closed in X, then the
sets U = Aand V = X — A constitute a separation of X, for they are open, disjoint,
and nonempty, and their union is X. Conversely, if U and V form a separation of X,
then U is nonempty and different from X, and it is both open and closed in X.

For a subspace Y of a topological space X, there is another useful way of formu-
lating the definition of connectedness:

Lemma23.1. IfY is a subspace of X, a separation of Y is a pair of disjoint nonempty
sets A and B whose union is Y, neither of which contains a limit point of the other.
The space Y is connected if there exists no separation of Y.

Proof Suppose first that A and B form a separation of Y. Then A is both open and
closed in Y. The closure of A in Y is the set AN Y (where A as usual denotes the
closure of A in X). Since A is closed in ¥, A = AN Y; or to say the same thing,
AN B = @. Since A is the union of A and its limit points, B contains no limit points
of A. A similar argument shows that A contains no limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y,
neither of which contains a limit point of the other. Then ANB=oandANB =2,
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therefore, we conclude that ANY = A and BNY = B. Thus both A and B are closed
inY,andsince A=Y — B and B =Y — A, they are openin Y as well. ]

EXAMPLE 1. Let X denote a two-point space in the indiscrete topology. Obviously there
is no separation of X, so X is connected.

EXAMPLE 2.  Let Y denote the subspace [—1, 0) U (0, 1] of the real line R. Each of the
sets [—1,0) and (0, 1] is nonempty and open in ¥ (although not in R); therefore, they form
a separation of Y. Alternatively, note that neither of these sets contains a limit point of the
other. (They do have a limit point 0 in common, but that does not matter.)

EXAMPLE 3. Let X be the subspace [—1, 1] of the real line. The sets [—1, 0} and (0, 1]
are disjoint and nonempty, but they do not form a separation of X, because the first set is
not open in X. Alternatively, nole that the first set contains a limit point, 0, of the second.
Indeed, there exists no separation of the space [—1, 1]. We shall prove this fact shortly.

EXAMPLE 4.  The rationals Q are not connected. Indeed, the only connected subspaces
of Q are the one-point sets: If ¥ is a subspace of Q containing two points p and g, one can
choose an irrational number a lying between p and ¢, and write Y as the union of the open
sets

YN(-o0,a) and Y N(a,+00).
EXAMPLE 5. Consider the following subset of the plane R?:
X={xxy|ly=0U{xxy|x>0andy=1/x}.

Then X is nqt connected; indeed, the two indicated sets form a separation of X because
neither contains a limit point of the other. See Figure 23.1.

Figure 23.1

We have given several examples of spaces that are not connected. How can one
construct spaces that are connected? We shall now prove several theorems that tell
how to form new connected spaces from given ones. In the next section we shall apply
these theorems to show that some specific spaces, such as intervals in R, and balls and
cubes in R", are connected. First, a lemma:

Lemma 23.2. If the sets C and D form a separation of X, and if Y is a connected
subspace of X, then Y lies entirely within either C or D.

Proof. Since C and D are both open in X, the sets CNY and DN Y are openin Y.
These two sets are disjoint and their union is Y; if they were both nonempty, they
would constitute a separation of Y. Therefore, one of them is empty. Hence ¥ must
lie entirely in C or in D. ]
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Theorem 233. The union of a collection of connected subspaces of X that have a
point in common is connected.

Proof. Let {Aq) be a collection of connected subspaces of a space X; let p be a point
of () Ag. We prove that the space ¥ = {J Aq is connected. Suppose thatY = CU D
is a separation of ¥. The point p is in one of the sets C or D; suppose p € C.
Since Ag is connected, it must lie entirely in either C or D, and it cannot lie in D
because it contains the point p of C. Hence A, C C for every a, so that Ude CC,
contradicting the fact that D is nonempty. =

Theorem 23.4. Let A be a connected subspace of X. IfA C B C A, then B is also
connected.

Said differently: If B is formed by adjoining to the connected subspace A some or
all of its limit points, then B is connected.
Proof. Let A be connected and let A C B C A. Suppose that B = CUDisa
separation of B. By Lemma 23.2, the set A must lie entirely in C or in D; suppose
that A C C. Then A C C; since € and D are disjoint, B cannot intersect D. This
contradicts the fact that D is a nonempty subset of B. =

Theorem 23.5. The image of a connected space under a continuous map is con-
nected.

Proof. Let f : X — Y be a continuous map; let X be connected. We wish to
prove the image space Z = f(X) is connected. Since the map obtained from f by
restricting its range to the space Z is also continuous, it suffices to consider the case
of a continuous surjective map

g X—Z

Suppose that Z = A U B is a separation of Z into two disjoint nonempty sets open
in Z. Then g~1(A) and g~} (B) are disjoint sets whose union is X; they are open in X
because g is continuous, and nonempty because g is surjective. Therefore, they form
a separation of X, contradicting the assumption that X is connected. =

Theorem 23.6. A finite cartesian product of connected spaces is connected.

Proof. 'We prove the theorem first for the product of two connected spaces X and Y.
This proof is easy to visualize. Choose a “base point” a X b in the product X x Y.
Note that the “horizontal slice” X x b is connected, being homeomorphic with X, and
each “vertical slice” x x Y is connected, being homeomorphic with Y. As a result,
each “T-shaped” space

T, =(X xb)U(x x ¥)

is connected, being the union of two connected spaces that have the point x x b in
common. See Figure 23.2. Now form the union {_J,¢x T of all these T-shaped spaces.
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This union is connected because it is the union of a collection of connected spaces that
have the point a x b in common. Since this union equals X x Y, the space X x Y is
connected.

Y xxY
axb
b Xx b
X
x a
Figure 23.2

The propf for any finite product of connected spaces follows by induction, using

the fact (easily proved) that X; x - - - x X, is homeomorphic with (X x - - x X,_1) x
Xn.

L]

It is natural to ask whether this theorem extends to arbitrary products of connected
spaces. The answer depends on which topology is used for the product, as the follow-
ing examples show.

EXAMPLE 6.  Consider the cartesian product R“ in the box topology. We can write R®
as the union of the set A consisting of all bounded sequences of real numbers, and the set B
of all unbounded sequences. These sets are disjoint, and each is open in the box topology.
For if a is a point of R“, the open set

U=(a-l,at+)x(@—-1la+1)x...

consists entirely of bounded sequences if a is bounded, and of unbounded sequences if a if
}mbounded. Thus, even though R is connected (as we shall prove in the next section), R¥
is not connected in the box topology.

EXAMPLE 7. Now consider R“ in the product topology. Assuming that R is con-
nected, we show that R® is connected. Let R” denote the subspace of R consisting of
all sequences x = (xy,x2,...) such that x; = O for i > n. The space R" is clearly
homeomorphic to R”, so that it is connected, by the preceding theorem. It follows that the
space R™ that is the union of the spaces R” is connected, for these spaces have the point
0=(0,0,...) incommon. We show that the closure of R equals all of R*, from which
it follows that R“ is connected as well.

Let a = (ar,az,...) be a point of R”. Let U = [[U; be a basis element for the
product topology that contains a. We show that U intersects R™ . There is an integer N
such that U; = R fori > N. Then the point -

X=(ay,...,a,,00,...)

of R™ belongs to U, since g; € U; foralli,and 0 € U; fori > N.



152 Connectedness and Compactness Ch. 3

The argument just given generalizes to show that an arbitrary product of connected
spaces is connected in the product topology. Since we shall not need this result, we
leave the proof to the exercises.

Exercises

1. Let 7 and 7' be two topologies on X. If 7/ > 7, what does connectedness
of X in one topology imply about connectedness in the other?

2. Let {A,) be a sequence of connected subspaces of X, such that A, N Aptt # @
for all n. Show that | J A, is connected.

3. Let {Aq} be a collection of connected subspaces of X; let A be a connected
subspace of X. Show that if AN Ay # @ foralla, then AU({J A,) is connected.

4. Show that if X is an infinite set, it is connected in the finite complement topology.

5. A space is totally disconnected if its only connected subspaces are one-point
sets. Show that if X has the discrete topology, then X is totally disconnected.
Does the converse hold?

6. Let A C X. Show that if C is a connected subspace of X that intersects both A
and X — A, then C intersects Bd A.

7. Is the space R connected? Justify your answer.

8. Determine whether or not R® is connected in the uniform topology.

9. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are
connected, show that

(X xY)—(A X B)

is connected.
10. Let {X4)qes be an indexed family of connected spaces; let X be the product

space
x =[] X

ael

Let a = (a,) be a fixed point of X.

(a) Given any finite subset K of J, let Xx denote the subspace of X consisting
of all points X = (xg) such that xo = ag for @ ¢ K. Show that Xk is
connected.

(b) Show that the union Y of the spaces X ¢ is connected.

(c) Show that X equals the closure of ¥; conclude that X is connected.

11. Let p : X — Y be a quotient map. Show that if each set p~1({y}) is connected,
and if Y is connected, then X is connected.

12. Let ¥ C X; let X and Y be connected. Show that if A and B form a separation
of X — Y,then Y U A and Y U B are connected.
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§24 Connected Subspaces of the Real Line

The theorems of the preceding section show us how to construct new connected spaces
out of given ones. But where can we find some connected spaces to start with? The
best place to begin is the real line. We shall prove that R is connected, and so are the
intervals and rays in R.

One application is the intermediate value theorem of calculus, suitably general-
ized. Another is the result that such familiar spaces as balls and spheres in euclidean
space are connected; the proof involves a new notion, called path connectedness,
which we also discuss.

The fact that intervals and rays in R are connected may be familiar to you from
analysis. We prove it again here, in generalized form. It tuns out that this fact does
not depend on the algebraic properties of R, but only on its order properties. To make
this clear, we shall prove the theorem for an arbitrary ordered set that has the order
properties of R. Such a set is called a linear continuum.

Definition. A simply ordered set L having more than one element is called a linear
continuum if the following hold:

(1) L has the least upper bound property.
(2) If x < y, there exists zsuch thatx <z < y.

Theorem 24.1. If L is a linear continuum in the order topology, then L is connected,
and so are intervals and rays in L.

Proof. Recall that a subspace Y of L is said to be convex if for every pair of points
a, b of Y with a < b, the entire interval {a, b] of points of L lies in Y. We prove that
if Y is a convex subspace of L, then Y is connected.

So suppose that Y is the union of the disjoint nonempty sets A and B, each of
which is openin Y. Choose a € A and b € B; suppose for convenience that a < b.
The interval {a, b] of points of L is contained in Y. Hence [a, b] is the union of the
disjoint sets

Ap=AN[a,b] and Bo=BnNIa,bl,

each of which is open in [a, b] in the subspace topology, which is the same as the order
topology. The sets Ag and By are nonempty because a € Ag and b € Bq. Thus, Ag
and By constitute a separation of [a, b].

Let ¢ = sup Ag. We show that c belongs neither to Ag nor to By, which contradicts
the fact that {a, b] is the union of A¢ and By.

Case 1. Suppose that ¢ € Byg. Thenc # a, soeitherc = bora <c < b. In
either case, it follows from the fact that By is open in {a, b] that there is some interval
of the form (d, c] contained in By. If ¢ = b, we have a contradiction at once, for d is a
smaller upper bound on Ag than c. If ¢ < b, we note that (¢, b] does not intersect Ag
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(because c is an upper bound on Ag). Then
(d,b] = (d, c]U (c, b]

does not intersect Ag. Again, d is a smaller upper bound on Ay than ¢, contrary to
construction. See Figure 24.1.

d c c e
3 t———
a b a ’ b

d ¢ c e
——%— F—t>—1]
a b a z b

Figure 24.1 Figure 24.2

Case 2. Suppose that ¢ € Ag. Then ¢ # b, soeitherc = aora < c < b.
Because Ag is open in [a, b], there must be some interval of the form [c, e) contained
in Ag. See Figure 24.2. Because of order property (2) of the linear continuum L, we
can choose a point z of L such that ¢ < z < e. Then z € Ay, contrary to the fact that
¢ is an upper bound for Ag. =

Corollary 24.2. The real line R is connected and so are intervals and rays in R.

As an application, we prove the intermediate value theorem of calculus, suitably
generalized.

Theorem 24.3 (Intermediate value theorem). Let f : X — Y be a continuous
map, where X is a connected space and Y is an ordered set in the order topology. If a
and b are two points of X and if r is a point of Y lying between f(a) and f(b), then
there exists a point ¢ of X such that f(c) =r.

The intermediate value theorem of calculus is the special case of this theorem that
occurs when we take X to be a closed interval in R and Y to be R.

Proof Assume the hypotheses of the theorem. The sets
A= f(X)n(—oo,r) and B= f(X)N(r, +0)

are disjoint, and they are nonempty because one contains f(a) and the other con-
tains f(b). Eachis open in f(X), being the intersection of an open ray in ¥ with f(X).
If there were no point ¢ of X such that f(c) = r, then f(X) would be the union of the
sets A and B. Then A and B would constitute a separation of f(X), contradicting the
fact that the image of a connected space under a continuous map is connected. ]
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EXAMPLE 1.  One example of a linear continuum different from R is the ordered square.
We check the least upper bound property. (The second property of a linear continuum is
trivial to check.) Let A be asubset of I x I;letmy : I x I — I be projection on the first
coordinate; let b = supm; (A). If b € m((A), then A intersects the subset b x T of I x I.
Because b x [ has the order type of I, the set A N (b x I) will have a least upper bound
b x ¢, which will be the least upper bound of A. See Figure 24.3. If b ¢ 71 (A), then b x 0
is the least upper bound of A; no element of the form &’ x ¢ with b’ < b can be an upper
bound for A, for then &’ would be an upper bound for 7; (A4).

bxc

\bxl

n(4)x 0 N A% 0

bx0

Figure 24.3

EXAMPLE 2. If X is a well-ordered set, then X x [0, 1) is a linear continuum in the
dictionary order; this we leave to you to check. This set can be thought of as having been
constructed by “fitting in” a set of the order type of (0, 1) immediately following each
element of X.

Connectedness of intervals in R gives rise to an especially useful criterion for
showing that a space X is connected; namely, the condition that every pair of points
of X can be joined by a path in X:

Definition. Given points x and y of the space X, a path in X from x to y is a
continuous map f : [a, b] — X of some closed interval in the real line into X, such
that f(a) = x and f(b) = y. A space X is said to be path connected if every pair of
points of X can be joined by a path in X.

It is easy to see that a path-connected space X is connected. Suppose X = AU B
is a separation of X. Let f : [a,b] — X be any path in X. Being the continuous
image of a connected set, the set f([a, b}) is connected, so that it lies entirely in either
A or B. Therefore, there is no path in X joining a point of A to a point of B, contrary
to the assumption that X is path connected.

The converse does not hold; a connected space need not be path connected. See
Examples 6 and 7 following.
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EXAMPLE 3.  Define the unit ball B" in R" by the equation
B" = (x| lIx|l < 1},

where

IXh = ool = o+ ) V2
The unit ball is path connected; given any two points X and y of B", the straight-line path
f [0, 1] > R” defined by

fEBy =1 -0x+ty
lies in B", For if x and y are in B” and t is in [0, 1],
FOF < (1=nlx| + iyl < 1.

A similar argument shows that every open ball By(x, €) and every closed ball By(x, €)
in R” is path connected.

EXAMPLE 4.  Define punctured euclidean space to be the space R" — {0}, where 0 is
the origin in R". If n > 1, this space is path connected: Given x and y different from 0,
we can join x and y by the straight-line path between them if that path does not go through
the origin. Otherwise, we can choose a point z not on the line joining x and y, and take the
broken-line path from x to z, and then from zto y.

EXAMPLES. Define the unit sphere "' in R" by the equation
$*7t = x| Ixll = 1.

If n > 1, itis path connected. For the map g : R” — {0} — 5§71 defined by g(x) = x/|Ix|l
is continuous and surjective; and it is easy to show that the continuous image of a path-
connected space is path connected.

EXAMPLE 6.  The ordered square 12 is connected but not path connected.

Being a linear continuum, the ordered square is connected. Let p = 0 x 0 and g =
Ix . We suppose there isapath f : [a, b] — 12 joining p and g and derive a contradiction.
The image set f([a, b]) must contain every point x x y of 102, by the intermediate value
theorem. Therefore, for each x € I, the set

Up = f'x x (0, 1))

is a nonempty subset of [a, b]; by continuity, it is open in [a, b]. See Figure 24 4. Choose,
for each x € I, a rational number g, belonging to Uy. Since the sets U, are disjoint, the
map x — gy is an injective mapping of I into Q. This contradicts the fact that the interval /
is uncountable (which we shall prove later).

ExaMPLE 7. Let S denote the following subset of the plane.
S ={x xsin(l/x) |0 <x <1}

Because S is the image of the connected set (0, 1] under a continuous map, § is connected.
Therefore, its closure § in R? is also connected. The set S is a classical example in topology
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Figure 24.4

called the topologist’s sine curve. It is illustrated in Figure 24.5; it equals the union of §
and the vertical interval 0 x [—1, 1]. We show that S is not path connected.

Suppose there is a path f : [a,¢] — § beginning at the origin and ending at a point
of S. The set of those t for which f(t) € 0x [—1, 1] is closed, so it has a largest element b.
Then f : [, c] — S is a path that maps b into the vertical interval 0 x [—1, 1] and maps
the other points of [b, c] to points of .

Replace [b, c] by 10, 1] for convenience; let f(t) = (x(t), y(t)). Then x(0) = 0,
while x(f) > 0 and y(t) = sin(1/x(¢t)) fort > 0. We show there is a sequence of points
t, = Osuchthat y(t,) = (=1)". Then the sequence y(t,) does not converge, contradicting
continuity of f.

To find ¢, we proceed as follows: Given n, choose u with 0 < u < x(1/n) such that
sin(1/u) = (—1)". Then use the intermediate value theorem to find ¢, with 0 < t, < 1/n
such that x(t,) = u.

[ eesm—
L]

Figure 24.5

Exercises

1. (a) Show that no two of the spaces (0, 1), (0, 1], and {0, 1] are homeomorphic.
[Hint: What happens if you remove a point from each of these spaces?)]
(b) Suppose that there exist imbeddings f : X — Y and g : ¥ — X. Show by
means of an example that X and ¥ need not be homeomorphic.
(¢) Show R" and R are not homeomorphic if n > 1.
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10.

11.

*12.
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. Let f : S' — R be a continuous map. Show there exists a point x of § ! such

that f(x) = f(—x).

. Let f 1 X — X be continuous. Show that if X = [0, 1], there is a point x such

that f(x) = x. The point x is called a fixed point of f. What happens if X
equals [0, 1) or (0, 1)?

. Let X be an ordered set in the order topology. Show that if X is connected, then

X is a linear continuum.

. Consider the following sets in the dictionary order. Which are linear continua?

(@ Zy x[0, D
®) [0, 1) x Zy
() {0,1) x [0,1]
(d) [0,1] x [0, 1)

. Show that if X is a well-ordered set, then X x [0, 1) in the dictionary order is a

linear continuum.

. (@) Let X and Y be ordered sets in the order topology. Show thatif f : X — ¥

is order preserving and surjective, then f is a homeomorphism.

(b) Let X = ¥ = R,.. Given a positive integer n, show that the function f(x) =
x" is order preserving and surjective. Conclude that its inverse, the nth root
function, is continuous.

(c) Let X be the subspace (—o0, —1) U [0, 00) of R. Show that the function
f : X - R defined by setting f(x) = x +1ifx < —1, and f(x) = x if
x > 0, is order preserving and surjective. Is f a homeomorphism? Compare
with (a).

. (@) Is a product of path-connected spaces necessarily path connected?

(b) If A C X and A is path connected, is A necessarily path connected?

(¢) If f: X — Y is continuous and X is path connected, is f(X) necessarily
path connected?

(d) If {Aq} is a collection of path-connected subspaces of X and if [} Ay # @,
is | J Aq necessarily path connected?

. Assume that R is uncountable. Show that if A is a countable subset of R?, then

R? — A is path connected. [Hins: How many lines are there passing through a
given point of R??]

Show that if U is an open connected subspace of R?, then U is path connected.
[Hint: Show that given xg € U, the set of points that can be joined to xq by a
path in U is both open and closed in U]

If A is a connected subspace of X, does it follow that Int A and Bd A are con-
nected? Does the converse hold? Justify your answers.

Recall that Sg denotes the minimal uncountable well-ordered set. Let L denote
the ordered set Sq x [0, 1) in the dictionary order, with its smallest element
deleted. The set L is a classical example in topology called the long line.
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Theorem. The long line is path connected and locally homeomorphic to R, but

it cannot be imbedded in R.

(a) Let X be an ordered set; leta < b < ¢ be points of X. Show that [a, ¢) has
the order type of [0, 1) if and only if both [a, b) and [b, ¢) have the order
type of {0, 1).

(b) Let X be an ordered set. Let xo < x; < --- be an increasing sequence of
points of X; suppose b = sup{x;}. Show that [xg, b) has the order type of
{0, 1) if and only if each interval [x;, x; 1) has the order type of [O, I).

(¢) Let ag denote the smallest element of Sq. For each element a of Sg; different
from ag, show that the interval [ag x 0,a x 0) of Sq x [0, 1) has the order
type of [0, 1). [Hint: Proceed by transfinite induction. Either a has an
immediate predecessor in Sq, or there is an increasing sequence g; in Sg
with a = sup{a;}.]

(d) Show that L is path connected.

(e) Show that every point of L has a neighborhood homeomorphic with an open
interval in R.

(f) Show that L cannot be imbedded in R, or indeed in R” for any n. [Hinz:
Any subspace of R" has a countable basis for its topology.]

*§25 Components and Local Connectedness’

Given an arbitrary space X, there is a natural way to break it up into pieces that are
connected (or path connected). We consider that process now.

Definition. Given X, define an equivalence relation on X by setting x ~ y if there
is a connected subspace of X containing both x and y. The equivalence classes are
called the components (or the “connected components”) of X.

Symmetry and reflexivity of the relation are obvious. Transitivity follows by not-
ing that if A is a connected subspace containing x and y, and if B is a connected
subspace containing y and z, then A U B is a subspace containing x and z that is
connected because A and B have the point y in common.

The components of X can also be described as follows:

Theorem 25.1.  The components of X are connected disjoint subspaces of X whose
union is X, such that each nonempty connected subspace of X intersects only one of
them.

Proof. Being equivalence classes, the components of X are disjoint and their union
is X. Each connected subspace A of X intersects only one of them. For if A intersects
the components C; and C; of X, say in points x| and x,, respectively, then x; ~ x;
by definition; this cannot happen unless Cy = C3.

This section will be assumed in Part Il of the book.
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To show the component C is connected, choose a point xg of C. For each point x
of C, we know that xg ~ x, so there is a connected subspace A, containing x¢ and x.
By the result just proved, A, C C. Therefore,

c=JA.

xeC

Since the subspaces A, are connected and have the point xo in common, their union is
connected. »

Definition. We define another equivalence relation on the space X by defining x ~ y
if there is a path in X from x to y. The equivalence classes are called the path compo-
nents of X.

Let us show this is an equivalence relation. First we note that if there exists a path
f :[a,b] = X from x to y whose domain is the interval [a, b], then there is also
a path g from x to y having the closed interval [c, d] as its domain. (This follows
from the fact that any two closed intervals in R are homeomorphic.) Now the fact that
x ~ x for each x in X follows from the existence of the constant path f : [a, b] > X
defined by the equation f(r) = x for all r. Symmetry follows from the fact that if
f :[0,1] = X is a path from x to y, then the “reverse path” g : [0, 1] — X defined
by g(r) = f(1 —1t) is a path from y to x. Finally, transitivity is proved as follows: Let
f:{0,1] = X bea path fromx to y, and let g : [1,2] — X be a path from y to z.
We can “paste f and g together” to get a path h : [0, 2] — X from x to z; the path &
will be continuous by the “pasting lemma,” Theorem 18.3.

One has the following theorem, whose proof is similar to that of the theorem pre-
ceding:

Theorem 25.2. The path components of X are path-connected disjoint subspaces
of X whose union is X, such that each nonempty path-connected subspace of X inter-
sects only one of them.

Note that each component of a space X is closed in X, since the closure of a
connected subspace of X is connected. If X has only finitely many components, then
each component is also open in X, since its complement is a finite union of closed sets.
But in general the components of X need not be openin X.

One can say even less about the path components of X, for they need be neither
open nor closed in X. Consider the following examples:

EXaMPLE 1. If Q is the subspace of R consisting of the rational numbers, then each
component of Q consists of a single point. None of the components of Q are open in Q.

ExAMPLE 2. The “topologist’s sine curve” § of the preceding section is a space that has
a single component (since it is connected) and two path components. One path component
is the curve S and the other is the vertical interval V = 0 x [~1, 1]. Note that S is open
in § but not closed, while V is closed but not open.

If one forms a space from § by deleting all points of V having rational second co-
ordinate, one obtains a space that has only one component but uncountably many path
components.
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Connectedness is a useful property for a space to possess. But for some purposes,
it is more important that the space satisfy a connectedness condition locally. Roughly
speaking, local connectedness means that each point has “arbitrarily small” neighbor-
hoods that are connected. More precisely, one has the following definition:

Definition. A space X is said to be locally connected at x if for every neighbor-
hood U of x, there is a connected neighborhood V of x contained in U. If X is locally
connected at each of its points, it is said simply to be locally connected. Similarly, a
space X is said to be locally path connected at x if for every neighborhood U of x,
there is a path-connected neighborhood V of x contained in U. If X is locally path
connected at each of its points, then it is said to be locally path connected.

ExAMPLE 3.  Each interval and each ray in the real line is both connected and locally
connected. The subspace [—1,0) U (0, 1] of R is not connected, but it is locally connected.
The topologist’s sine curve is connected but not locally connected. The rationals Q are
neither connected nor locally connected.

Theorem 25.3. A space X is locally connected if and only if for every open set U
of X, each component of U is openin X.

Proof. Suppose that X is locally connected; let U be an open set in X; let C be a
component of U . If x is a point of C, we can choose a connected neighborhood V' of x
such that V C U. Since V is connected, it must lie entirely in the component C of U.
Therefore, C is openin X.

Conversely, suppose that components of open sets in X are open. Given a point x
of X and a neighborhood U of x, let C be the component of U containing x. Now C
is connected; since it is open in X by hypothesis, X is locally connected at x. ]

A similar proof holds for the following theorem:

Theorem 25.4. A space X is locally path connected if and only if for every open
set U of X, each path component of U is openin X.

The relation between path components and components is given in the following
theorem:

Theorem 25.5. If X is a topological space, each path component of X lies in a
component of X. If X is locally path connected, then the components and the path
components of X are the same.

Proof. Let C be a component of X; let x be a point of C; let P be the path component
of X containing x. Since P is connected, P C C. We wish to show that if X is locally
path connected, P = C. Suppose that P ¢ C. Let Q denote the union of all the path
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components of X that are different from P and intersect C; each of them necessarily
lies in C, so that

C=PUQ.

Because X is locally path connected, each path component of X is open in X. There-
fore, P (which is a path component) and Q (which is a union of path components)
are open in X, so they constitute a separation of C. This contradicts the fact that C is
connected. =

Exercises

1. What are the components and path components of R;? What are the continuous
maps f : R —> R;?
2. (a) What are the components and path components of R (in the product topol-
ogy)?
(b) Consider R” in the uniform topology. Show that x and y lie in the same
component of R® if and only if the sequence

X—y={x1 =y, x2-y2,...)

is bounded. [Hint: It suffices to consider the case where y = 0.]

(c) Give R the box topology. Show that x and y lie in the same component
of R“ if and only if the sequence x —y is “eventually zero.” [Hint: If x—y is
not eventually zero, show there is homeomorphism h of R with itself such
that h(x) is bounded and h(y) is unbounded.]

3. Show that the ordered square is locally connected but not locally path connected.
What are the path components of this space?

4, Let X be locally path connected. Show that every connected open set in X is
path connected.

5. Let X denote the rational points of the interval [0, 1] x 0 of R2. Let T denote the
union of all line segments joining the point p = 0 x 1 to points of X.
(a) Show that T is path connected, but is locally connected only at the point p.
(b) Find a subset of R? that is path connected but is locally connected at none
of its points.

6. A space X is said to be weakly locally connected at x if for every neighbor-
hood U of x, there is a connected subspace of X contained in U that contains
a neighborhood of x. Show that if X is weakly locally connected at each of its
points, then X is locally connected. [Hint: Show that components of open sets
are open.]

7. Consider the “infinite broom” X pictured in Figure 25.1. Show that X is not lo-

cally connected at p, but is weakly locally connected at p. [Hins: Any connected
neighborhood of p must contain all the points g;.]
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8. Let p : X — Y be aquotient map. Show that if X is locally connected, then ¥
is locally connected. [Hins: If C is a component of the open set U of Y, show
that p~}(C) is a union of components of p~1(U) ]

9. Let G be a topological group; let C be the component of G containing the identity
element e. Show that C is a normal subgroup of G. [Hint: If x € G, then xC is
the component of G containing x.]

10. Let X be a space. Let us define x ~ y if there is no separation X = A U B of X

into disjoint open sets such that x € Aand y € B.

(2) Show this relation is an equivalence relation. The equivalence classes are
called the quasicomponents of X.

‘(b) Show that each component of X lies in a quasicomponent of X, and that
the components and quasicomponents of X are the same if X is locally con-
nected.

(¢) Let K denote the set {1/n | n € Z} and let — K denote the set {—1/n |ne
Z.}. Determine the components, path components, and quasicomponents of
the following subspaces of R2:

A= (K x[0,1)U{0x0)U{0x 1}.
B=AU(0,1] x {O}).
C = (K x[0,1PDU (=K x [-1,0D) U (0, 1] x —=K) U ([~1,0] x K).

§26 Compact Spaces

The notion of compactness is not nearly so natural as that of connectedness. From the
beginnings of topology, it was clear that the closed interval {a, b] of the real line had
a certain property that was crucial for proving such theorems as the maximum value
theorem and the uniform continuity theorem. But for a long time, it was not clear
how this property should be formulated for an arbitrary topological space. It used to
be thought that the crucial property of [a, b] was the fact that every infinite subset
of [a, b] has a limit point, and this property was the one dignified with the name of
compactness. Later, mathematicians realized that this formulation does not lie at the
heart of the matter, but rather that a stronger formulation, in terms of open coverings
of the space, is more central. The latter formulation is what we now call compactness.
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It is not as natural or intuitive as the former; some familiarity with it is needed before
its usefulness becomes apparent.

Definition. A collection 4 of subsets of a space X is said to cover X, or to be a
covering of X, if the union of the elements of A4 is equal to X. It is called an open
covering of X if its elements are open subsets of X.

Definition. A space X is said to be compact if every open covering » of X contains
a finite subcollection that also covers X.

EXAMPLE 1.  The real line R is not compact, for the covering of R by open intervals
A={(nn+2)|neclZ}

contains no finite subcollection that covers R.

EXAMPLE 2.  The following subspace of R is compact:
X={0lu{l/n|neZy}.

Given an open covering 4 of X, there is an element U of A containing 0. The set U
contains all but finitely many of the points 1/n; choose, for each point of X notin U, an
element of A containing it. The collection consisting of these elements of A, along with
the element U, is a finite subcollection of A that covers X.

EXAMPLE 3. Any space X containing only finitely many points is necessarily compact,
because in this case every open covering of X is finite.

EXAMPLE 4.  The interval (0, 1] is not compact; the open covering
A={(1/n,1]11n € Z4}

contains no finite subcollection covering (0, 1]. Nor is the interval (0, 1) compact; the
same argument applies. On the other hand, the interval [0, 1] is compact; you are probably
already familiar with this fact from analysis. In any case, we shall prove it shortly.

In general, it takes some effort to decide whether a given space is compact or
not. First we shall prove some general theorems that show us how to construct new
compact spaces out of existing ones. Then in the next section we shall show certain
specific spaces are compact. These spaces include all closed intervals in the real line,
and all closed and bounded subsets of R”.

Let us first prove some facts about subspaces. If Y is a subspace of X, a collec-
tion 4 of subsets of X is said to cover Y if the union of its elements contains Y.

Lemma 26.1. Let Y be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite subcollection covering Y .
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Proof. Suppose that Y is compact and 4 = {Aq)aes is a covering of Y by sets open
in X. Then the collection

{Ag NY | €]}
is a covering of Y by sets open in ¥'; hence a finite subcollection
{Ag,NY, ..., Ag, N Y}

covers Y. Then {Ag,, ..., Aq,} is a subcollection of A that covers Y.

Conversely, suppose the given condition holds; we wish to prove ¥ compact. Let
A’ = {A',) be a covering of ¥ by sets open in Y. For each &, choose a set Aq open
in X such that

A, =A,NY.
The collection 4 = {Ag} is a covering of ¥ by sets open in X. By hypothesis, some
finite subcollection {Aq,, . . -, Aa,} covers Y. Then {A:n' . A;n] is a subcollection
of A’ that covers Y. ]

Theorem 26.2. Every closed subspace of a compact space is compact.

Proof. Let Y be a closed subspace of the compact space X. Given a covering +4 of Y
by sets open in X, let us form an open covering B of X by adjoining to + the single
open set X — Y, that is,

B=AU{X-TY)

Some finite subcollection of B covers X. If this subcollection contains the set X — Y,
discard X — Y: otherwise, leave the subcollection alone. The resulting collection is a
finite subcollection of »4 that covers Y. ]

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of the Hausdorff space X. We shall prove that
X — Y is open, so that Y is closed.

Let xq be a point of X — Y. We show there is a neighborhood of xq that is disjoint
from Y. For each point y of ¥, let us choose disjoint neighborhoods Uy and V) of the
points xq and y, respectively (using the Hausdorff condition). The collection {V, | y €
Y} is a covering of ¥ by sets open in X; therefore, finitely many of them Vy,, ..., V),
cover Y. The open set

V=V, UeUV,
contains Y, and it is disjoint from the open set
U=U,N---NUy,

formed by taking the intersection of the corresponding neighborhoods of xo. For if z
isa point of V, then z € V, for some i, hence z ¢ Uy, andsoz ¢ U. See Figufe 26.1.
Then U is a neighborhood of xq disjoint from Y, as desired. ]
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The statement we proved in the course of the preceding proof will be useful to us
later, so we repeat it here for reference purposes:

Lemma 26.4. IfY is a compact subspace of the Hausdorff space X and xo isnotin Y,
then there exist disjoint open sets U and V of X containing xo and Y, respectively.

EXAMPLE 5.  Once we prove that the interval [a, b] in R is compact, it follows from
Theorem 26.2 that any closed subspace of [a, b] is compact. On the other hand, it follows
from Theorem 26.3 that the intervals (a, b] and (a, b) in R cannot be compact (which we
knew already) because they are not closed in the Hausdorff space R.

EXAMPLE 6.  One needs the Hausdorff condition in the hypothesis of Theorem 26.3.
Consider, for example, the finite complement 10pology on the real line. The only proper
subsets of R that are closed in this topology are the finite sets. But every subset of R is
compact in this topology, as you can check.

Theorem 26.5. The image of a compact space under a continuous map is compact.

Proof Let f: X — Y be continuous; let X be compact. Let A be a covering of the
set f(X) by sets open in Y. The collection

{fTHA) | A e A)

is a collection of sets covering X; these sets are open in X because f is continuous.
Hence finitely many of them, say

FHAD, L A,

cover X. Then the sets Ay, ..., A, cover f(X). | |
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One important use of the preceding theorem is as a tool for verifying that a map is
a homeomorphism:

Theorem 26.6. Let f : X — Y be a bijective continuous function. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. We shall prove that images of closed sets of X under f are closed in ¥ this
will prove continuity of the map f =L If A is closed in X, then A is cornpact, by
Theorem 26.2. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y, by Theorem 26.3. n

Theorem 26.7. The product of finitely many compact spaces is compact.

Proof. 'We shall prove that the product of two compact spaces is compact; the theo-
rem follows by induction for any finite product.

Step 1. Suppose that we are given spaces X and ¥, with Y compact. Suppose that
xo is a point of X, and N is an open set of X x Y containing the “slice” x¢g x Y of
X x Y. We prove the following:

There is a neighborhood W of xo in X such that N contains the entire set
WxY.

The set W x Y is often called a fube about xg x Y.

First let us cover xg x Y by basis elements U x V (for the topology of X x Y)
lying in N. The space xo x Y is compact, being homeomorphic to Y. Therefore, we
can cover xg x Y by finitely many such basis elements

Uy x Vi,...,Up x V.

(We assume that each of the basis elements U; x V; actually intersects xg x Y, since
otherwise that basis element would be superfluous; we could discard it from the finite
collection and still have a covering of xg x Y.) Define

w=U0---NU,.

The set W is open, and it contains xo because each set U; x V; intersects xg x Y.

We assert that the sets U; x V;, which were chosen to cover the slice xg x Y,
actually cover the tube W x Y. Let x x y be a point of W x Y. Consider the point
xo x y of the slice xo x Y having the same y-coordinate as this point. Now xo X y
belongs to U; x V; forsome i, so that y € V;. Butx € U; forevery j (because x € w).
Therefore, we have x x y € U; x Vi, as desired.

Since all the sets U; x V; lie in N, and since they cover W x Y, the tube W x ¥
lies in N also. See Figure 26.2.

Step 2. Now we prove the theorem. Let X and ¥ be compact spaces. Let A
be an open covering of X x Y. Given xo € X, the slice xg x Y is compact and
may therefore be covered by finitely many elements Ay, ..., Ap of A. Their union
N = A U- - -U A, is an open set containing xo x ¥; by Step 1, the open set N contains
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atube W x Y about xg x Y, where W is open in X. Then W x Y is covered by finitely
many elements A1, ..., Am of A.

Thus, for each x in X, we can choose a neighborhood W, of x such that the tube
W, x Y can be covered by finitely many elements of 4. The collection of all the
neighborhoods W, is an open covering of X; therefore by compactness of X, there
eXists a finite subcollection

(Wi, ..., Wi}
covering X. The union of the tubes
WixY, . ...,WexY

is all of X x Y since each may be covered by finitely many elements of A, so may
X x Y be covered. n

The statement proved in Step 1 of the preceding proof will be useful to us later, so
we repeat it here as a lemma, for reference purposes:

Lemma 26.8 (The tube lemma). Consider the product space X x Y, where Y is
compact. If N is an open set of X x Y containing the slice xo x Y of X x Y, then N
contains some tube W x Y about xg x Y, where W is a neighborhood of x¢ in X .

EXAMPLE 7.  The tube lemma is certainly not true if Y is not compact. For example, let
Y be the y-axis in R?, and le1

N ={x xy; |xt < /P + D).

Then N is an open set containing the set 0 x R, but it contains no tube about 0 x R. It is
illustrated in Figure 26.3.
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Figure 26.3

There is an obvious question to ask at this point. /s the product of infinitely many
compact spaces compact? One would hope that the answer is “yes,” and in fact it is.
The result is important (and difficult) enough to be called by the name of the man who
proved it; it is called the Tychonoff theorem.

In proving the fact that a cartesian product of connected spaces is connected, one
proves it first for finite products and derives the general case from that. In proving
that cartesian products of compact spaces are compact, however, there is no way to
go directly from finite products to infinite ones. The infinite case demands a new
approach, and the proof is a difficult one. Because of its difficuity, and also to avoid
losing the main thread of our discussion in this chapter, we have decided to postpone it
until later. However, you can study it now if you wish; the section in which it is proved
(§37) can be studied immediately after this section without causing any disruption in
continuity.

There is one final criterion for a space to be compact, a criterion that is formulated
in terms of closed sets rather than open sets. It does not look very natural nor very
useful at first glance, but it in fact proves to be useful on a number of occasions. First
we make a definition.

Definition. A collection C of subsets of X is said to have the finite intersection
property if for every finite subcollection

{Cy, ... Cul
of G, the intersection C; N - - - N Cp is nonempty.
Theorem 26.9. Let X be a topological space. Then X is compact if and only if

for every collection C of closed sets in X having the finite intersection property, the
intersection (e C of all the elements of C is nonempty.
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Proof. Given a collection A of subsets of X, let
C={X—-—A|AcA}

be the collection of their complements. Then the following statements hold:
(1) s is a collection of open sets if and only if € is a collection of closed sets.

(2) The collection 4 covers X if and only if the intersection [\cce C of all the
elements of C is empty.
(3) The finite subcollection {Aj, ..., As} of A covers X if and only if the intersec-
tion of the corresponding elements C; = X — A; of C is empty.
The first statement is trivial, while the second and third follow from DeMorgan’s law:
X — (A = (X - 4a).
aelt ael
The proof of the theorem now proceeds in two easy steps: taking the contrapositive
(of the theorem), and then the complement (of the sets)!
The statement that X is compact is equivalent to saying: “Given any collection A
of open subsets of X, if 4 covers X, then some finite subcollection of A covers X.”
This statement is equivalent to its contrapositive, which is the following: “Given any
collection A of open sets, if no finite subcollection of 4 covers X, then A does not
cover X.” Letting C be, as earlier, the collection {X — A | A € A} and applying
(1)~(3), we see that this statement is in turn equivalent to the following: “Given any
collection € of closed sets, if every finite intersection of elements of C is nonempty,
then the intersection of all the elements of € is nonempty.” This is just the condition
of our theorem. | |

A special case of this theorem occurs when we have a nested sequence C; D C; D
D Cpr D Cry1 D ... of closed sets in a compact space X. If each of the sets Cy, is
nonempty, then the collection € = {Cy}nez, automatically has the finite intersection
property. Then the intersection

ne

neZ,
is nonempty.
We shall use the closed set criterion for compactness in the next section to prove
the uncountability of the set of real numbers, in Chapter 5 when we prove the Ty-
chonoff theorem, and again in Chapter 8 when we prove the Baire category theorem.

Exercises

1. (a) Let 7 and 7' be two topologies on the set X; suppose that 7' O 7. What
does compactness of X under one of these topologies imply about compact-
ness under the other?

(b) Show that if X is compact Hausdorff under both 7 and 7, then either 7
and 7' are equal or they are not comparable.

[S]
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(a) Show that in the finite complement topology on R, every subspace is com-
pact.

(b) If R has the topology consisting of all sets A such that R — A is either
countable or all of R, is {0, 1] a compact subspace?

. Show that a finite union of compact subspaces of X is compact.
. Show that every compact subspace of a metric space is bounded in that metric

and is closed. Find a metric space in which not every closed bounded subspace
is compact.

. Let A and B be disjoint compact subspaces of the Hausdorff space X. Show that

there exist disjoint open sets U and V containing A and B, respectively.

Show that if f : X — Y is continuous, where X is compact and Y is Hausdorff,
then f is a closed map (that is, f carries closed sets to closed sets).

. Show that if Y is compact, then the projection 7wy : X x ¥ — X is a closed map.
. Theorem. Let f: X — Y;letY be compact Hausdorff. Then f is continuous

if and only if the graph of f,
Gyp={xx f(x)|x€X),
is closed in X x Y. [Hint: If G is closed and V is a neighborhood of f(xo),

then the intersection of Gy and X x (¥ — V) is closed. Apply Exercise 7.]

Generalize the tube lemma as follows:

Theorem. Let A and B be subspaces of X and Y, respectively; let N be an open
setin X x Y containing A x B. If A and B are compact, then there exist open
sets U and V in X and Y, respectively, such that

AxBCUxVCN.

. (a) Prove the following partial converse to the uniform limit theorem:

Theorem. Let f, : X — R be a sequence of continuous functions, with
fa(x) = f(x) foreachx € X. If f is continuous, and if the sequence f, is
monotone increasing, and if X is compact, then the convergence is uniform.
[We say that f, is monotone increasing if fn(x) < fu41(x) for all n and x.}

(b) Give examples to show that this theorem fails if you delete the requirement
that X be compact, or if you delete the requirement that the sequence be
monotone. [Hint: See the exercises of §21.]

Theorem. Let X be a compact Hausdorff space. Let A be a collection of closed
connected subsets of X that is simply ordered by proper inclusion. Then

y=[)4
AeA

is connected. [Hint: If C U D is a separation of Y, choose disjoint open sets U
and V of X containing C and D, respectively, and show that

(N@a-wuvy

AcA
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is not empty.]

12. Let p : X — Y be a closed continuous surjective map such that p-ldy)) is
compact, for each y € Y. (Such a map is called a perfect map.) Show that if Y
is compact, then X is compact. [Hinz: If U is an open set containing PR ()}
there is a neighborhood W of y such that p~ Y (W) is contained in U ]

13. Let G be a topological group.

(a) Let A and B be subspaces of G. If A is closed and B is compact, show A - B
is closed. [Hint: If c is not in A - B, find a neighborhood W of ¢ such that
W - B~! is disjoint from A.]

(b) Let H be a subgroup of G; let p : G — G/H be the quotient map. If H is
compact, show that p is a closed map.

(c) Let H be a compact subgroup of G. Show that if G/H is compact, then G
is compact.

§27 Compact Subspaces of the Real Line

The theorems of the preceding section enable us to construct new compact spaces from
existing ones, but in order to get very far we have to find some compact spaces to start
with. The natural place to begin is the real line; we shall prove that every closed inter-
val in R is compact. Applications include the extreme value theorem and the uniform
continuity theorem of calculus, suitably generalized. We also give a characterization
of all compact subspaces of R”, and a proof of the uncountability of the set of real
numbers.

It turns out that in order to prove every closed interval in R is compact, we need
only one of the order properties of the real line—the least upper bound property. We
shall prove the theorem using only this hypothesis; then it will apply not only to the
real line, but to well-ordered sets and other ordered sets as well.

Theorem 27.1. Let X be a simply ordered set having the least upper bound property.
In the order topology, each closed interval in X is compact.

Proof. Step 1. Given a < b, let 4 be a covering of [a, b] by sets open in [a, b] in the
subspace topology (which is the same as the order topology). We wish to prove the
existence of a finite subcollection of 4 covering [a, b]. First we prove the following:
If x is a point of [a, b] different from b, then there is a point y > x of [a, b] such that
the interval [x, y] can be covered by at most two elements of 4.

If x has an immediate successor in X, let y be this immediate successor. Then
[x, y] consists of the two points x and y, S0 that it can be covered by at most two
elements of 4. If x has no immediate successor in X, choose an element A of A
containing x. Because x # b and A is open, A contains an interval of the form [x, ¢),
for some c in [a, b]. Choose a point y in (x, ¢); then the interval [x, y] is covered by
the single element A of A.
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Step 2. Let C be the set of all points y > a of [a, b] such that the interval [a, y]
can be covered by finitely many elements of 4. Applying Step 1 to the case x = a,
we see that there eXists at least one such y, so C is not empty. Let ¢ be the least upper
bound of the set C; thena < ¢ < b.

Step 3. We show that ¢ belongs to C; that is, we show that the interval [a, ] can
be covered by finitely many elements of 4. Choose an element A of » containing c;
since A is open, it contains an interval of the form (d, c] for some d in [a, b). If ¢ is
not in C, there must be a point z of C lying in the interval (d, c), because otherwise d
would be a smaller upper bound on C than ¢. See Figure 27.1. Since z is in C, the
interval [a, z] can be covered by finitely many, say n, elements of A. Now [z, c] lies
in the single element A of #, hence [a, ¢] = [a, z] U [z, c] can be covered by n + 1
elements of 4. Thus ¢ is in C, contrary to assumption.

z yory

& L \ by & by )

T \ J T T T

a d c a c b
Figure 27.1 Figure 27.2

Step 4. Finally, we show that ¢ = b, and our theorem is proved. Suppose that
¢ < b. Applying Step 1 to the case x = ¢, we conclude that there exists a point y > ¢
of [a, b] such that the interval [c, y] can be covered by finitely many elements of A.
See Figure 27.2. We proved in Step 3 that ¢ is in C, so [a, c] can be covered by finitely
many elements of 4. Therefore, the interval

la, y]={a, c]U[e, y]
can also be covered by finitely many elements of +. This means that y isin C, con-

tradicting the fact that ¢ is an upper bound on C. n

Corollary 27.2.  Every closed interval in R is compact.

Now we characterize the compact subspaces of R":
Theorem 27.3. A subspace A of R" is compact if and only if it is closed and is
bounded in the euclidean metric d or the square metric p.

Proof. It will suffice to consider only the metric p; the inequalities
p(x,y) <d(x,y) < v/np(x,y)

imply that A is bounded under d if and only if it is bounded under p.
Suppose that A is compact. Then, by Theorem 26.3, it is closed. Consider the
collection of open sets

{Bo(0,m) | m € Z,},
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whose union is all of R*. Some finite subcollection covers A. It follows that A C
B, (0, M) for some M. Therefore, for any two points x and y of A, we have p(x, y) <
2M. Thus A is bounded under p.

Conversely, suppose that A is closed and bounded under p; suppose that p(x, y) <
N for every pair x, y of points of A. Choose a point xo of A, and let p(xo,0) = b.
The triangle inequality implies that p(x, 0) < N + b forevery x in A. If P = N + b,
then A is a subset of the cube [— P, P]", which is compact. Being closed, A is also
compact. | |

Students often remember this theorem as stating that the collection of compact
sets in a metric space equals the collection of closed and bounded sets. This statement
is clearly ridiculous as it stands, because the question as to which sets are bounded
depends for its answer on the metric, whereas which sets are compact depends only on
the topology of the space.

EXAMPLE 1. The unit sphere $"~! and the closed unit ball B” in R" are compact
because they are closed and bounded. The set

A={xx(1/x)|0<x <1}
is closed in R, but it is not compact because it is not bounded. The set
S={xx(sin(l/x)) |0 <x <1}
is bounded in R?, but it is not compact because it is not closed.

Now we prove the extreme value theorem of calculus, in suitably generalized form.

Theorem 27.4 (Extreme value theorem). Let f : X — Y be continuous, where Y
is an ordered set in the order topology. If X is compact, then there exist points ¢ and d
in X such that f(c) < f(x) < f(d) foreveryx € X.

The extreme value theorem of calculus is the special case of this theorem that
occurs when we take X to be a closed interval in R and ¥ to be R.

Proof. Since f is continuous and X is compact, the set A = f(X) is compact. We

show that A has a largest element M and a smallest element m. Then since m and M

belong to A, we must have m = f(c) and M = f(d) for some points ¢ and d of X.
If A has no largest element, then the collection

{(-00,a) | a € A}
forms an open covering of A. Since A is compact, some finite subcollection
{(=00,a1), ..., (=00, an)}

covers A. If g; is the largest of the elements ay, . . . a,, then a; belongs to none of these

sets, contrary to the fact that they cover A.
A similar argument shows that A has a smallest element. n
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Now we prove the uniform continuity theorem of calculus. In the process, we
are led to introduce a new notion that will prove to be surprisingly useful, that of a
Lebesgue number for an open covering of a metric space. First, a preliminary notion:

Definition. Let (X, d) be a metric space; let A be a nonempty subset of X. For each
x € X, we define the distance from x to A by the equation

d(x,A) =infld(x,a) | a € A}.

It is easy to show that for fixed A, the function d(x, A) is a continuous function
of x: Given x, y € X, one has the inequalities

d(x,4) <d(x,a) <d(x,y)+d(y,a),
for each a € A. It follows that
d(x,A)—d(x,y) <infd(y,a) =d(y, A),
so that
d(x, A) —d(y, A) < d(x, y).

The same inequality holds with x and y interchanged; continuity of the function
d(x, A) follows.

Now we introduce the notion of Lebesgue number. Recall that the diameter of a
bounded subset A of a metric space (X, d) is the number

sup{d(ay, az) | a1, a2 € A}.

Lemma 27.5 (The Lebesgue number lemma). Let A be an open covenng of the
metric space (X, d). If X is compact, there is a 8 > 0 such that for each subset of X
having diameter less than 8, there exists an element of A containing it.

The number § is called a Lebesgue number for the covering A.

Proof. Let A be an open covering of X. If X itself is an element of A, then any
positive number is a Lebesgue number for 4. So assume X is not an element of A.

Choose a finite subcollection {Ay, ..., A,} of 4 that covers X. For each i, set
C; = X — A;, and define f : X — R by letting f(x) be the average of the numbers
d(x, C;). Thatis,

1 n
fx)y= -3 d(x, Co).
i=1

We show that f(x) > Oforall x. Given x € X, choose i sothatx € A;. Then choose €
so the e-neighborhood of x lies in A;. Thend(x, C;) > €, so that f(x) > €/n.
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Since £ is continuous, it has a minimum value §; we show that § is our required
Lebesgue number. Let B be a subset of X of diameter less than 6. Choose a point xo
of B: then B lies in the §-neighborhood of xg. Now

s < f(XO) < d(XO, Cin),

where d(xg, C) is the largest of the numbers d(xo, C;). Then the §-neighborhood
of x¢ is contained in the element Ay, = X — Cm of the covering . n

Definition. A function f from the metric space (X, dx) to the metric space (Y, dy)
is said to be uniformly continuous if given € > 0, thereisa é > 0 such that for every
pair of points xg, x| of X,

dy(xg, x1) < 8§ = dy(f (xp), f(x1)) < €.

Theorem 27.6 (Uniform continuity theorem). Let f : X — Y bea continuous
map of the compact metric space (X, dx) to the metric space (Y, dy). Then f is
uniformly continuous.

Proof Given € > 0, take the open covering of ¥ by balls B(y, €/2) of radius /2.
Let 4 be the open covering of X by the inverse images of these balls under f. Choose §
to be a Lebesgue number for the covering ». Then if x) and x are two points of X
such that dy (x;, x2) < §, the two-point set {xy, x} has diameter less than 4, so that
its image { f (x1), f(x2)} lies in some ball B(v, €/2). Then dy(f(x1), f(x2)) < €, a8
desired. | |

Finally, we prove that the real numbers are uncountable. The interesting thing
about this proof is that it involves no algebra at all—no decimal or binary expansions
of real numbers or the like—just the order properties of R.

Definition. If X is a space, a point x of X is said to be an isolated point of X if the
one-point set {x} is open in X.

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has no solated
points, then X is uncountable.

Proof. Step 1. We show first that given any nonempty open set U of X and any
point x of X, there exists a nonempty open set V contained in U such that x ¢ V.

Choose a point y of U different from x; this is possible if x is in U because x is not
an isolated point of X and it is possible if x is notin U simply because U is nonempty.
Now choose disjoint open sets Wy and W about x and y, respectively. Then the set
V = W, N U is the desired open set; it is contained in U, it is nonempty because it
contains y, and its closure does not contain x. See Figure 27.3.

Step 2. We show that given f : Z; — X, the function f is not surjective. It
follows that X is uncountable.
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Figure 27.3

Let x, = f(n). Apply Step | to the nonempty open set U = X to choose a
nonempty open set Vi C X such that V; does not contain x;. In general, given V,_;
open and nonempty, choose V, to be a nonempty open set such that V, C V,_ and ¥,
does not contain x,. Consider the nested sequence

\_/13‘_/23---

of nonempty closed sets of X. Because X is compact, there is a point x € [} Vy,, by
Theorem 26.9. Now x cannot equal x,, for any n, since x belongs to V, and x, does
not.

. | |

Corollary 27.8. Every closed interval in R is uncountable.

Exercises

1. Prove thatif X is an ordered set in which every closed interval is compact, then X
has the least upper bound property.
2. Let X be a metric space with metric d; let A C X be nonempty.
(a) Show thatd(x, A) =0if and onlyif x € A.
(b) Show that if A is compact, d(x, A) = d(x, a) forsome a € A.
(c) Define the e-neighborhood of A in X to be the set

U(A,e) ={x|d(x, A) < ¢€}.

Show that U (A, €) equals the union of the open balls By(a, €) for a € A.
(d) Assume that A is compact; let U be an open set containing A. Show that
some e-neighborhood of A is contained in U.
(e) Show the resuit in (d) need not hold if A is closed but not compact.

3. Recall that Rg denotes R in the K -topology.
(a) Show that [0, 1] is not compact as a subspace of Ry .
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(b) Show that Ry is connected. [Hint: (—0o0, 0) and (0, co0) inherit their usual
topologies as subspaces of Rg ]
(c) Show that Ry is not path connected.
4. Show that a connected metric space having more than one point is uncountable.
5. Let X be a compact Hausdorff space; let {A,} be a countable collection of closed
sets of X. Show that if each set A, has empty interior in X, then the union | A,
has empty interior in X. [Hint: Imitate the proof of Theorem 27.7.]
This is a special case of the Baire category theorem, which we shall study in
Chapter 8.
6. Let Ag be the closed interval [0, 1] in R. Let A be the set obtained from Ag by
deleting its “middle third” (%, %). Let A, be the set obtained from A) by deleting
its “middle thirds” (%, %) and (%, %). In general, define A, by the equation

® /1+3k 243k
Ap = An—t = U ( 3n ' 3n .
k=0

The intersection

C= () 4n

neZy

is called the Cantor set; it is a subspace of [0, 1].

(a) Show that C is totally disconnected.

(b) Show that C is compact.

(c) Show that each set A, is a union of finitely many disjoint closed intervals of
length 1/3"; and show that the end points of these intervals liein C.

(d) Show that C has no isolated points.

(e) Conclude that C is uncountable.

§28 Limit Point Compactness

As indicated when we first mentioned compact sets, there are other formulations of
the notion of compactness that are frequently useful. In this section we introduce
one of them. Weaker in general than compactness, it coincides with compactness for
metrizable spaces.

Definition. A space X is said to be limit point compact if every infinite subset of X
has a limit point.

In some ways this property is more natural and intuitive than that of compactuess.
In the early days of topology, it was given the name “compactness,” while the open
covering formulation was called “bicompactness.” Later, the word “compact” was
shifted to apply to the open covering definition, leaving this one to search for a new
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name. It still has not found a name on which everyone agrees. On historical grounds,
some call it “Fréchet compactness”; others call it the “Bolzano-Weierstrass property.”
We have invented the term “limit point compactness.” It seems as good a term as any;
at least it describes what the property is about.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be a compact space. Given a subset A of X, we wish to prove that if A
is infinite, then A has a limit point. We prove the contrapositive—if A has no limit
point, then A must be finite.

So suppose A has no limit point. Then A contains all its limit points, so that A is
closed. Furthermore, for each a € A we can choose a neighborhood U, of a such that
U, intersects A in the point a alone. The space X is covered by the open set X — A
and the open sets Up; being compact, it can be covered by finitely many of these sets.
Since X — A does not intersect A, and each set U, contains only one point of A, the
set A must be finite. n

EXAMPLE 1. Let Y consist of two points; give Y the topology consisting of ¥ and
the empty set. Then the space X = Z, x Y is limit point compact, for every nonempty
subset of X has a limit point. It is not compact, for the covering of X by the open sets
U, = {n} x Y has no finite subcollection covering X.

EXAMPLE 2.  Here is a less trivial example. Consider the minimal uncountable well-
ordered set Sq, in the order topology. The space Sq is not compact, since it has no largest
element. However, it is limit point compact: Let A be an infinite subset of Sq. Choose a
subset B of A that is countably infinite. Being countable, the set B has an upper bound b
in Sq; then B is a subset of the interval [ag, b] of S, where ag is the smallest element
of Sq. Since Sq has the least upper bound property, the interval {ag, b] is compact. By the
preceding theorem, B has a limit point x in [ag, b]. The point x is also a limit point of A.
Thus Sq is limit point compact.

We now show these two versions of compactness coincide for metrizable spaces;
for this purpose, we introduce yet another version of compactness called sequential
compactness. This result will be used in Chapter 7.

Definition. Let X be a topological space. If (x,) is a sequence of points of X, and if
np<ny<-.:--<njp<---

is an increasing sequence of positive integers, then the sequence (y;) defined by setting
Vi = Xp, is called a subsequence of the sequence (x,). The space X is said to be
sequentially compact if every sequence of points of X has a convergent subsequence.

*Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:
(1) X is compact.
(2) X is limit point compact.
(3) X is sequentially compact.
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Proof We have already proved that (1) = (2). To show that (2) = (3), assume
that X is limit point compact. Given a sequence (x,) of points of X, consider the set
A = {x, | n € Z,}. If the set A is finite, then there is a point x such that x = x, for
infinitely many values of n. In this case, the sequence (x») has a subsequence that is
constant, and therefore converges trivially. On the other hand, if A is infinite, then A
has a limit point x. We define a subsequence of (x,) converging to x as follows: First
choose ny so that

Xn, € Bx, 1).

Then suppose that the positive integer n;_1 18 given. Because the ball B(x, 1/i) inter-
sects A in infinitely many points, we can choose an index n; > n;—y such that

Xn; € B(x, 1/§).

Then the subsequence X, Xp,, - - - CONVErges o x.

Finally, we show that (3) = (1). This is the hardest part of the proof.

First, we show that if X is sequentially compact, then the Lebesgue number lemma
holds for X. (This would follow from compactness, but compactness is what we are
trying to prove!) Let 4 be an open covering of X. We assume that there isno 8 > 0
such that each set of diameter less than & has an element of A containing it, and derive
a contradiction.

Our assumption implies in particular that for each positive integer 7, there exists a
set of diameter less than 1/ that is not contained in any element of A let C, besucha
set. Choose a point x, € Cn, for eachn. By hypothesis, some subsequence (xn;) of the
sequence (x,) converges, say to the point a. Now a belongs to some element A of the
collection ' because A is open, we may choose an € > 0 such that B(a,¢) C A. If i
is large enough that 1/n; < €/2, then the set Cp, lies in the € /2-neighborhood of x,,;; if
i is also chosen large enough that d(x,,, a) < €/ 2, then C,,, lies in the e-neighborhood
of a. But this means that C,, C A, contrary to hypothesis.

Second, we show that if X is sequentially compact, then given € > 0, there exists
a finite covering of X by open e-balls. Once again, we proceed by contradiction.
Assume that there exists an € > 0 such that X cannot be covered by finitely many
€-balls. Construct a sequence of points x, of X as follows: First, choose x; to be any
point of X. Noting that the ball B(x1, €} is not all of X (otherwise X could be covered
by a single e-ball), choose x; to be a point of X not in B(xy, €). In general, given
X1, ..., Xy, choose x4 to be a point not in the union

B(x1,e)U---U B(xy, €),

using the fact that these balls do not cover X. Note that by construction d (41, Xi) >
efori =1, ..., n Therefore, the sequence (x,) can have no convergent subsequence;
in fact, any ball of radius €/2 can contain x,, for at most one value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let A be
an open covering of X. Because X is sequentially compact, the open covering 4 has
a Lebesgue number 8. Let € = §/3; use sequential compactness of X to find a finite
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covering of X by open e-balls. Each of these balls has diameter at most 24/3, so it
lies in an element of 4. Choosing one such element of 4 for each of these ¢ -balls, we
obtain a finite subcollection of +4 that covers X. | |

EXAMPLE 3. Recall that Sq denotes the minimal uncountable well-ordered set S¢ with
the point £ adjoined. (In the order topology, 2 is a limit point of Sg, which is why we
introduced the notation Sq for So U (2}, back in §10.) It is easy to see that the space Sq
is not metrizable, for it does not satisfy the sequence lemma: The point  is a limit point
of Sq; but it is not the limit of a sequence of points of Sq, for any sequence of points of Sg
has an upper bound in Sq. The space S, on the other hand, does satisfy the sequence
lemma, as you can readily check. Nevertheless, Sq is not metrizable, for it is limit point
compact but not compact.

Exercises

1. Give [0, 1]* the uniform topology. Find an infinite subset of this space that has
no limit point.

2. Show that [0, 1] is not limit point compact as a subspace of Ry.

3. Let X be limit point compact.

(a) If f: X — Y is continuous, does it follow that f(X) is limit point compact?

(b) If A is a closed subset of X, does it follow that A is limit point cornpact?

(c) If X is a subspace of the Hausdorff space Z, does it follow that X is closed
in Z?7

We comment that it is not in general true that the product of two limit point com-

pact spaces is limit point compact, even if the Hausdorff condition is assumed.

But the examples are fairly sophisticated. See [S-S], Example 112.

4. A space X is said to be countably compact if every countable open covering
of X contains a finite subcollection that covers X. Show that for a T space X,
countable compactness is equivalent to limit point compactness. [Hint: If no
finite subcollection of U, covers X, choose x, ¢ Uy U --- U Uy, for eachn.]

5. Show that X is countably compact if and only if every nested sequence C1 D
Cy D - - - of closed nonempty sets of X has a nonempty intersection.

6. Let (X, d) be a metric space. If f : X — X satisfies the condition

d(f(x), f(y)) =d(x,y)

forall x, y € X, then f is called an isometry of X. Show that if f is an isometry
and X is compact, then f is bijective and hence a homeomorphism. [Hine: If
a ¢ f(X), choose € so that the e-neighborhood of a is disjoint from f(X). Set
xy =a,and x,41 = f(x,) in general. Show that d(x,, x,,) > € forn # m.]

7. Let (X, d) be a metric space. If f satisfies the condition

d(f(x), f(y) <dx,y)
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forall x,y € X with x # y, then f is called a shrinking map. If there is a
number o < 1 such that

d(f(x), f() Sad(x,y)

forall x, y € X, then f is called a contraction. A fixed point of f is a point x

such that f(x) = x.

(a) If f is a contraction and X is compact, show f has a unique fixed point.
[Hint: Define fl = fand f"+l = f o f". Consider the intersection A of
the sets 4, = f"(X).]

(b) Show more generally that if f isa shrinking map and X is compact, then f
has a unique fixed point. [Hinz: Let A be as before. Given x € A, choose x,
sothatx = f n+1(x,). If a is the limit of some subsequence of the sequence
Yn = f™(xn), show thata € A and f(a) = x. Conclude that A = f(A), so
that diam A = 0.]

(¢c) Let X = [0,1]. Show that fx) = x — x2/2 maps X into X and is a

shrinking map that is not a contraction. [Hint: Use the mean-value theorem

of calcutus.]

The result in (a) holds if X is a complete metric space, such as R; see the

exercises of §43. The result in (b) does not: Show that the map f : R —

R given by f(x) = [x + (x* + 1)1/21/2 is a shrinking map that is not a

contraction and has no fixed point.

d

~

§29 Local Compactness

In this section we study the notion of local compactness, and we prove the basic the-
orem that any locally compact Hausdorff space can be imbedded in a certain compact
Hausdorff space that is called its one-point compactification.

Definition. A space X is said to be locally compact at x if there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact at each of
its points, X is said simply to be locally compact.

Note that a compact space is automatically locally compact.

EXAMPLE 1. The real line R is locally compact. The point x lies in some interval (q, b),
which in turn is contained in the compact subspace [a, b]. The subspace Q of rational
numbers is not locally compac, as you can check.

EXAMPLE 2.  The space R" is locally compact; the point x lies in some basis element
(ay, b1) x - - - x (@n, by), which in tum lies in the compact subspace [a1, 1] X - - - X [an, bs].
The space R“ is not locally compact; none of its basis elements are contained in compact
subspaces. For if

B=(a1,b1)x---x(a,,,b,,)x]Rx---x]Rx---
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were contained in a compact subspace, then its closure
B ={(a1,b1] x -~ x [an, ba] x R x ---

would be compact, which it is not.

EXAMPLE 3. Every simply ordered set X having the least upper bound property is
locally compact: Given a basis element for X, it is contained in a closed interval in X,
which is compact.

Two of the most well-behaved classes of spaces to deal with in mathematics are the
metrizable spaces and the compact Hausdorff spaces. Such spaces have many useful
properties, which one can use in proving theorems and making constructions and the
like. If a given space is not of one of these types, the next best thing one can hope for is
that it is a subspace of one of these spaces. Of course, a subspace of a metrizable space
is itself metrizable, so one does not get any new spaces in this way. But a subspace of a
compact Hausdorff space need not be compact. Thus arises the question: Under what
conditions is a space homeomorphic with a subspace of a compact Hausdorff space?
We give one answer here. We shall return to this question in Chapter 5 when we study
compactifications in general.

Theorem 29.1. Let X be a space. Then X is locally compact Hausdorff if and only
if there exists a space Y satisfying the following conditions:

(1) X is a subspace of Y.

(2) ThesetY — X consists of a single point.

(3) Y is a compact Hausdorff space.
IfY and Y’ are two spaces satisfying these conditions, then there is a homeomorphism
of Y withY’ that equals the identity map on X.

Proof. Step 1. We first verify uniqueness. Let ¥ and Y’ be two spaces satisfying
these conditions. Define h : ¥ — Y’ by letting h map the single point p of ¥ — X to
the point ¢ of Y/ — X, and letting & equal the identity on X. We show that if U is open
in Y, then A(U) is open in Y’. Symmetry then implies that / is a homeomorphism.

First, consider the case where U does not contain p. Then h(U) = U. Since U is
open in Y and is contained in X, it is open in X. Because X is openin ¥, the set U is
also open in Y’, as desired.

Second, suppose that U contains p. Since C = Y — U is closed in Y, it is compact
as a subspace of Y. Because C is contained in X, it is a compact subspace of X.
Then because X is a subspace of Y’, the space C is also a compact subspace of ¥’.
Because Y’ is Hausdorff, C is closed in Y’, so that A(U) = Y’ — C is open in Y’, as
desired.

Step 2. Now we suppose X is locally compact Hausdorff and construct the space Y.
Step 1 gives us an idea how to proceed. Let us take some object that is not a point
of X, denote it by the symbol oo for convenience, and adjoin it to X, forming the set
Y = X U {co}. Topologize Y by defining the collection of open sets of Y to consist
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of (1) all sets U that are open in X, and (2) all sets of the form Y — C, where C is a
compact subspace of X.

We need to check that this collection is, in fact, a topology on Y. The empty set is
a set of type (1), and the space Y is a set of type (2). Checking that the intersection of
two open sets is open involves three cases:

Uuint; is of type (I).
(Y—Cl)r‘\(Y—Cg)-——Y—(CIUCz) is of type (2).
Un -C=UNX-Cy) isoftype (1),

because C, is closed in X. Similarly, one checks that the union of any collection of
open sets is open:

U Uy, =U is of type (1).
U(y—cﬂ)zy—(ﬂcﬂ)ZY—c is of type (2).
UauJr -y =vur -0 =Y-(C-),

which is of type (2) because C — U is a closed subspace of C and therefore compact.

Now we show that X is a subspace of Y. Given any open set of ¥, we show its
intersection with X is open in X. If U is of type (1), then UN X = U if ¥ — Cisof
type (2), then (Y —O)NX =X - C; both of these sets are open in X. Conversely,
any set open in X is a set of type (1) and therefore open in ¥ by definition.

To show that Y is compact, let A be an open covering of Y. The collection + must
contain an open set of type (2), say ¥ — C, since none of the open sets of type (1) con-
tain the point co. Take all the members of 4 different from Y — C and intersect them
with X; they form a collection of open sets of X covering C. Because C is compact,
finitely many of them cover C; the corresponding finite collection of elements of 4
will, along with the element Y — C, cover allof Y.

To show that Y is Hausdorff, let x and y be two points of Y. If both of them lie
in X, there are disjoint sets U and V open in X containing them, respectively. On the
other hand, if x € X and y = oo, we can choose a compact set C in X containing
a neighborhood U of x. Then U and ¥ — C are disjoint neighborhoods of x and oo,
respectively, in Y.

Step 3. Finally, we prove the converse. Suppose a space ¥ satisfying conditions
(1)=(3) exists. Then X is Hausdorff because it is a subspace of the Hausdorff space Y.
Given x € X, we show X is locally compact at x. Choose disjoint open sets U and ¥
of Y containing x and the single point of ¥ — X, respectively. Then the set C=Y-V
is closed in Y, so it is a compact subspace of Y. Since C lies in X, it is also compact
as a subspace of X; it contains the neighborhood U of x. n

If X itself should happen to be compact, then the space Y of the preceding theorem
is not very interesting, for it is obtained from X by adjoining a single isolated point.
However, if X is not compact, then the point of ¥ — X is a limit point of X, so that
X=v.
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Definition. If Y is a compact Hausdorff space and X is a proper subspace of ¥ whose
closure equals Y, then Y is said to be a compactification of X. If Y — X equals a single
point, then Y is called the one-point compactification of X.

We have shown that X has a one-point compactification Y if and only if X is
a locally compact Hausdorff space that is not itself compact. We speak of ¥ as “the”
one-point compactification because Y is uniquely determined up to a homeomorphism.
EXAMPLE 4.  The one-point compactification of the real line R is homeomorphic with
the circle, as you may readily check. Similarly, the one-point compactification of R? is
homeomorphic to the sphere S2. If R? is looked at as the space C of complex numbers,
then C U {oo} is called the Riemann sphere, or the extended complex plane.

In some ways our definition of local compactness is not very satisfying. Usually
one says that a space X satisfies a given property “locally” if every x € X has “arbi-
trarily small” neighborhoods having the given property. Our definition of local com-
pactness has nothing to do with “arbitrarily small” neighborhoods, so there is some
question whether we should call it local compactness at all.

Here is another formulation of local compactness, one more truly “local” in nature;
it is equivalent to our definition when X is Hausdorff.

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only
ifgivenx in X, and given a neighborhood U of x, there is a neighborhood V of x such
that V is compactand V C U.

Proof Clearly this new formulation implies local compactuess; the set C = V is the
desired compact set containing a neighborhood of x. To prove the converse, suppose X
is locally compact; let x be a point of X and let U be a neighborhood of x. Take the
one-point compactification ¥ of X, and let C be the set ¥ — U. Then C is closed
in Y, so that C is a compact subspace of Y. Apply Lemma 26.4 to choose disjoint
open sets V and W containing x and C, respectively. Then the closure Vof VinYis
compact; furthermore, V is disjoint from C, so that V C U, as desired. n

Corollary 29.3. Let X be locally compact Hausdorff; let A be a subspace of X. If A
is closed in X oropen in X, then A is locally compact.

Proof. Suppose that A is closed in X. Given x € A, let C be a compact subspace
of X containing the neighborhood U of x in X. Then C N A is closed in C and thus
compact, and it contains the neighborhood U N A of x in A. (We have not used the
Hausdortf condition here.)

Suppose now that A is open in X. Given x € A, we apply the preceding theorem
to choose a neighborhood V of x in X such that V is compact and ¥V < A. Then
C = V is a compact subspace of A containing the neighborhood V of x in A. n

Corollary 29.4. A space X is homeomorphic to an open subspace of a compact
Hausdorff space if and only if X is locally compact Hausdorff.

Proof. This follows from Theorem 29.1 and Corollary 29.3. | |
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Exercises

1. Show that the rationals Q are not locally compact.

2. Let {X,} be an indexed family of nonempty spaces.
(a) Show that if [] X, is locally compact, then each X is locally compact and
X is compact for all but finitely many values of a.
(b) Prove the converse, assuming the Tychonoff theorem.

3. Let X be a locally compact space. If f : X — Y is continuous, does it follow
that f(X) is locally compact? What if f is both continuous and open? Justify
your answer.

4. Show that {0, 11 is not locally compact in the uniform topology.

5.1f f : X, — X, is a homeomorphism of locally compact Hausdorff spaces,
show f extends to a homeomorphism of their one-point compactifications.

6. Show that the one-point compactification of R is homeomorphic with the cir-
cle St

7. Show that the one-point compactification of Sg is homeomorphic with Sa.

8. Show that the one-point compactification of Z is homeomorphic with the sub-
space {0} U {1/n | n € Z;} of R.

9, Show that if G is a locally compact topological group and H is a subgroup, then
G/ H is locally compact.

10. Show that if X is a Hausdorff space that is locally compact at the point x, then
for each neighborhood U of x, there is a neighborhood V of x such that V is
compactand V C U.

*11. Prove the following:

(a) Lemma. Ifp: X — Y isa quotient map and if Z is a locally compact
Hausdorff space, then the map

A=pxiz:XxZ-—YxZ

is a quotient map.
{Hint: If w~1(A) is open and contains x x y, choose open sets Uy and V
with V compact, such thatx x y € Uy x V and U; x V C n~'(A). Given
U;xV c 7~ '(A), use the tube lemma to choose an open set U; 4 containing
p~U(p(U;)) such that Uiy x V C w~1(A). Let U = | J U;; show that U x V

is a saturated neighborhood of x x y that is contained in x7l(A).]
An entirely different proof of this result will be outlined in the exercises
of §46.

(b) Theorem. Letp: A — Bandg:C — D be quotient maps. If B and C
are locally compact Hausdorff spaces, thenp x q : Ax C — Bx Disa
quotient map.
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*Supplementary Exercises: Nets

We have already seen that sequences are “adequate” to detect limit points, continuous
functions, and compact sets in metrizable spaces. There is a generalization of the
notion of sequence, called a net, that will do the same thing for an arbitrary topological
space. We give the relevant definitions here, and leave the proofs as exercises. Recall
that a relation < on a set A is called a partial order relation if the following conditions
hold:

(1) a < aforall a.

(2) fe < Band 8 < @, thena = B.

3) Ifa < Band B < y,thena <X y.
Now we make the following definition:

A directed set J is a set with a partial order < such that for each pair a, 8 of
elements of J, there exists an element y of J having the property that @ < y and
B=xv.

1. Show that the following are directed sets:

(a) Any simply ordered set, under the relation <.

(b) The collection of all subsets of a set S, partially ordered by inclusion (that
is, Ax Bif AC B).

(¢) A collection 4 of subsets of S that is closed under finite intersections, par-
tially ordered by reverse inclusion (thatis A < Bif A D B).

(d) The collection of all closed subsets of a space X, partially ordered by inclu-
sion.

2. A subset K of J is said to be cofinal in J if for each o € J, there exists g € K
such that & < 8. Show that if J is a directed set and X is cofinal in J, then K is
a directed set.

3. Let X be a topological space. A net in X is a function f from a directed set J
into X. If « € J, we usually denote f (&) by xo. We denote the net f itself by
the symbol (x4 )gey, Of merely by (xq) if the index set is understood.

The net (xg) is said to converge to the point x of X (written xo —> x) if for
each neighborhood U of x, there exists & € J such that

axpB=2xgel.

Show that these definitions reduce to familiar ones when J = Z.
4. Suppose that

(*)aes — xin X and  (Ye)wes — yinY.

Show that (xg X Yo) —> x X yin X x Y.
5. Show that if X is Hausdorff, a net in X converges to at most one point.
6. Theorem. Let A € X. Thenx € A if and only if there is a net of points of A
converging to x.
[Hint: To prove the implication =>, take as index set the collection of all neigh-
borhoods of x, partially ordered by reverse inclusion.}



188

10.

11.

12.

Connectedness and Compactness Ch. 3

. Theorem. Let f: X — Y. Then f is continuous if and only if for every con-

vergent net (xy) in X, converging to x, say, the net (f (x¢)) converges to f(x).

.Let f : J — X beanetinX; let f(a) = xo. If K is a directed set and

g : K — J is a function such that

@ i=j=380)=8()

(ii) g(K) is cofinalin J,
then the composite function f o g : K — X is called a subnet of (x¢). Show
that if the net (xy) converges to x, so does any subnet.

. Let (xq)ocs be anetin X. We say that x is an accumulation point of the net (x,)

if for each neighborhood U of x, the set of those « for which x, € U is cofinal
inJ.
Lemma. The net (x,) has the point x as an accumulation point if and only if
some subnet of (x,) converges tox.

{Hint: To prove the implication =, let K be the set of all pairs (o, U) where
@ ¢ J and U is a neighborhood of x containing x,. Define (a, U) < (8, V) if
o < Band V C U. Show that K is a directed set and use it to define the subnet.]

Theorem. X is compact if and only if every net in X has a convergent subnet.
{Hint: To prove the implication =, let By = {xg | & =< B} and show that
{By) has the finite intersection property. To prove <=, let 4 be a collection of
closed sets having the finite intersection property, and let 8 be the collection of
all finite intersections of elements of s, partially ordered by reverse inclusion.}

Corollary. Let G be a topological group; let A and B be subsets of G. If A is
closed in G and B is compact, then A - B is closed in G.

[Hint: First give a proof using sequences, assuming that G is metrizable.]
Check that the preceding exercises remain correct if condition (2) is omitted from
the definition of directed set. Many mathematicians use the term “directed set”
in this more general sense.

Chapter 4

Countability and Separation
Axioms

The concepts we are going to introduce now, unlike compactness and connectedness,
do not arise naturally from the study of calculus and analysis. They arise instead from a
deeper study of topology itself. Such problems as imbedding a given space in a metric
space or in a compact Hausdorff space are basically problems of topology rather than
analysis. These particular problems have solutions that involve the countability and
separation axioms,

We have already introduced the first countability axiom; it arose in connection with
our study of convergent sequences in §21. We have also studied one of the separation
axioms—the Hausdorff axiom, and mentioned another—the T} axiom. In this chapter
we shall introduce other, and stronger, axioms like these and explore some of their
consequences. Our basic goal is to prove the Urysohn metrization theorem. It says
that if a topological space X satisfies a certain countability axiom (the second) and a
certain separation axiom (the regularity axiom), then X can be imbedded in a metric
space and is thus metrizable.

Another imbedding theorem, important to geometers, appears in the last section
of the chapter. Given a space that is a compact manifold (the higher-dimensional
analogue of a surface), we show that it can be imbedded in some finite-dimensional
euclidean space.
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