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where S, (T) is the section of T by x.

(a) Let (T1, <)) and (T, <2) be two towers in X. Show that either these two
ordered sets are the same, or one equals a section of the other. [Hinz: Switch-
ing indices if necessary, we can assume that & : Ty — T; is order preserving
and h(Ty) equals either T, or a section of T. Use Exercise 2 to show that
h(x) = x for all x.]

(b) If (T, <) is a tower in X and T # X, show there is a tower in X of which
(T, <) is a section.

(c) Let {(Tk, <i)lk € K} be the collection of all towers in X. Let

T= U T, and <= U(<k).

kek kek

Show that (T, <) is a tower in X. Conclude that T = X.

8. Using Exercises 1-4, construct an uncountable well-ordered set, as follows. Let
A be the collection of all pairs (4, <), where A is asubset of Z, and < is a well-
ordering of A. (We allow A to be empty.) Define (A, <) ~ (A4, < if (A, <)
and (A4’, <’) have the same order type. It is trivial to show this is an equivalence
relation. Let [(4, <)] denote the equivalence class of (4, <); let E denote the
collection of these equivalence classes. Define

[(4, )] < [(A, <N]

if (A, <) has the order type of a section of (A’, <').

(a) Show that the relation « is well defined and is a simple order on E. Note
that the equivalence class [(&, @)] is the smallest element of E.

(b) Show that if @ = [(A, <)] is an element of E, then (A, <) has the same
order type as the section Sq (E) of E by a. [Hint: Defineamap f : A — E
by setting f(x) = [(S,(A), restriction of <)] for each x € A.]

(c) Conclude that E is well-ordered by <.

(d) Show that E is uncountable. [Hint: If h : E — Z, is a bijection, then h
gives rise to a well-ordering of Z..]

This same argument, with Z, replaced by an arbitrary well-ordered set X,
proves (without use of the choice axiom) the existence of a well-ordered set E
whose cardinality is greater than that of X.

This exercise shows that one can construct an uncountable well-ordered set,
and hence the minimal uncountable well-ordered set, by an explicit construction
that does not use the choice axiom. However, this result is less interesting than it
might appear. The crucial property of S, the one we use repeatedly, is the fact
that every countable subset of S has an upper bound in Sq. That fact depends,
in turn, on the fact that a countable union of countable sets is countable. And the
proof of that result (if you examine it carefully) involves an infinite number of
arbitrary choices—that is, it depends on the choice axiom.

Said differently, without the choice axiom we may be able to construct the
minimal uncountable well-ordered set, but we can’t use it for anything!

Chapter 2

Topological Spaces
and Continuous Functions

The concept of topological space grew out of the study of the real line and euclidean
space and the study of continuous functions on these spaces. In this chapter, we de-
fine what a topological space is, and we study a number of ways of constructing a
topology on a set so as to make it into a topological space. We also consider some
of the elementary concepts associated with topological spaces. Open and closed sets,
limit points, and continuous functions are introduced as natural generalizations of the
corresponding ideas for the real line and euclidean space.

§12 Topological Spaces

The definition of a topological space that is now standard was a long time in being
formulated. Various mathematicians—Fréchet, Hausdorff, and others—proposed dif-
ferent definitions over a period of years during the first decades of the twentieth cen-
tury, but it took quite a while before mathematicians settled on the one that seemed
most suitable. They wanted, of course, a definition that was as broad as possible,
so that it would include as special cases all the various examples that were useful
in mathematics—euclidean space, infinite-dimensional euclidean space, and function
spaces among them—but they also wanted the definition to be narrow enough that the
standard theorems about these familiar spaces would hold for topological spaces in
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76  Topological Spaces and Continuous Functions Ch. 2

general. This is always the problem when one is trying to formulate a new mathe-
matical concept, to decide how general its definition should be. The definitiori finally
settled on may seem a bit abstract, but as you work through the various ways of con-
structing topological spaces, you will get a better feeling for what the concept means.

Definition. A topology on a set X is a collection 7 of subsets of X having the
following properties:

(1) gand X are in 7.

(2) The union of the elements of any subcollection of 7 is in 7.

(3) The intersection of the elements of any finite subcoliection of 7" isin 7.
A set X for which a topology 7 has been specified is called a topological space.

Properly speaking, a topological space is an ordered pair (X, 7°) consisting of a
set X and a topology 7 on X, but we often omit specific mention of 7 if no confusion
will arise.

If X is a topological space with topology 7, we say that a subset U of X is an
open set of X if U belongs to the collection T Usmg this terminology, one can say
that a topological space is a set X together w1th a collection of subsets of X, called
open sets, such that @ and X are both open, and such that arbitrary unions and finite
intersections of open sets are open.

EXAMPLE 1. Let X be a three-element set, X = {a, b, ¢}. There are many possible
topologies on X, some of which are indicated schematically in Figure 12.1. The diagram
in the upper right-hand corner indicates the topology in which the open sets are X, @,
{a, b}, {b}, and {b, c}. The topology in the upper left-hand corner contains only X and &,
while the topology in the lower right-hand corner contains every subset of X. You can get
other topologies on X by permuting a, b, and c.

Figure 12.1

From this example, you can see that even a three-element set has many different
topologies. But not every collection of subsets of X is a topology on X. Neither of the
collections indicated in Figure 12.2 is a topology, for instance.
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Figure 12.2

EXAMPLE 2.  If X is any set, the collection of all subsets of X is a topology on X it is
called the discrete topology. The collection consisting of X and & only is also a topology
on X; we shall call it the indiscrete topology, or the trivial topology.

ExXAMPLE 3. Let X be a set; let 77 be the collection of all subsets U of X such that X - U
either is finite or is all of X. Then 77 is a topology on X, called the finite complement
topology. Both X and & are in T, since X — X is finite and X — @ is all of X. If {U,} is
an indexed family of nonempty elements of 77, to show that J Uy isin T'#, we compute

X=|JUe =X = U

The latter set is finite because each set X — Uy is finite. If Uy, ..., U, are nonempty
elements of 7, to show that Ui isin T, we compute

v =Jx - .

i=1

D:

X -

The latter set is a finite union of finite sets and, therefore, finite.

EXAMPLE 4. Let X be a set; let 7, be the collection of all subsets U of X such that
X — U either is countable or is all of X. Then 7 is a topology on X, as you can check.

~

Definition. Suppose that 7 and 7' are two topologies on a givenset X. If 7/ 5 7,
we say that 7’ is finer than 7°; if T’ properly contains 7, we say that 7' is strictly
finer than 7. We also say that is coarser than T, or strictly coarser, in these two
respective situations. We say T~ is comparable with T/ if either 7/ D T or 7 D 7.

This terminology is suggested by thinking of a topological space as being some-
thing like a truckload full of gravel—the pebbles and all unions of collections of peb-
bles being the open sets. If now we smash the pebbles into smaller ones, the collection
of open sets has been enlarged, and the topology, like the gravel, is said to have been
made finer by the operation.

Two topologies on X need not be comparable, of course. In Figure 12.1 preced-
ing, the topology in the upper right-hand corner is strictly finer than each of the three
topologies in the first column and strictly coarser than each of the other topologies in
the third column. But it is not comparable with any of the topologies in the second
column.

Other terminology is sometimes used for this concept. If 7/ > T, some math-
ematicians would say that 7 is larger than 7, and 7 is smaller than T'. This is
certainly acceptable terminology, if not as vivid as the words “finer” and “coarser.”
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Many mathematicians use the words “weaker” and “stronger” in this context. Un-
fortunately, some of them (particularly analysts) are apt to say that T is stronger
than 7 if 7/ O T, while others (particularly topologists) are apt to say that T " is
weaker than 7 in the same situation! If you run across the terms “strong topology”
or “weak topology” in some book, you will have to decide from the context which
inclusion is meant. We shall not use these terms in this book.

§13 Basis for a Topology

For each of the examples in the preceding section, we were able to specify the topology
by describing the entire collection 7~ of open sets. Usually this is too difficult. In
most cases, one specifies instead a smaller collection of subsets of X and defines the
topology in terms of that.

Definition. If X is a set, a basis for a topology on X is a collection 8B of subsets of X
(called basis elements) such that

(1) Foreach x € X, there is at least one basis element B containing x.

(2) If x belongs to the intersection of two basis elements Bi and B, then there is a

basis element B3 containing x such that By C By N Bs.

If B satisfies these two conditions, then we define the topology T generated by B as
follows: A subset U of X is said to be open in X (that is, to be an element of 7") if for
each x € U, there is a basis element B € B such that x € B and B C U. Note that
each basis element is itself an element of 7.

We will check shortly that the collection 7~ is indeed a topology on X. But first let
us consider some examples.

EXAMPLE |.  Let 8 be the collection of all circular regions (interiors of circles) in the
plane. Then B satisfies both conditions for a basis. The second condition is illustrated in
Figure 13.1. In the topology generated by B, a subset U of the plane is open if every x
in U lies in some circular region contained in U.

xe

Figure 13.1 Figure 13.2
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EXAMPLE 2.  Let B’ be the collection of all rectangular regions (interiors of rectangles)
in the plane, where the rectangles have sides parallel to the coordinate axes. Then B’
satisfies both conditions for a basis. The second condition is illustrated in Figure 13.2; in
this case, the condition is trivial, because the intersection of any two basis elements is itself
a basis element (or empty). As we shall see later, the basis B’ generates the same topology
on the plane as the basis B given in the preceding example.

EXAMPLE 3. If X is any set, the collection of all one-point subsets of X is a basis for
the discrete topology on X.

Let us check now that the collection 7~ generated by the basis B is, in fact, a
topology on X. If U is the empty set, it satisfies the defining condition of openness
vacuously. Likewise, X is in 7, since for each x € X there is some basis element
B containing x and contained in X. Now let us take an indexed family {Uy}oey, Of
elements of 7 and show that

U=|JU

aet

belongs to 7. Given x € U, there is an index o such that x € Uy,. Since Uy is open,
there is a basis element B such thatx € B C Uy. Thenx € Band B C U, so that U
is open, by definition.

Now let us take two elements U; and U, of 7 and show that Uy N U, belongs to 7.
Given x € U NU,, choose a basis element B; containing x such that By C Uy ; choose
also a basis element B; containing x such that By C U;. The second condition for a
basis enables us to choose a basis element B3 containing x such that B3 C By N B;.
See Figure 13.3. Then x € Bz and B3 C Uy N Uz, so Uy N U, belongs to T, by
definition.

Figure 13.3

Finally, we show by induction that any finite intersection U1 N- - -NU, of elements
of T is in 7. This fact is trivial for n = 1, we suppose it true for n — 1 and prove it
for n. Now

W n---NU)y=W,0---0U,-))NU,.
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By hypothesis, Uy 1 - - N U,_ belongs to T; by the result just proved, the inter-
section of Uy N --- N Uu_1 and U, also belongs to 7.

Thus we have checked that collection of open sets generated by a basis B is, in
fact, a topology.

Another way of describing the topology generated by a basis is given in the fol-
lowing lemma:

Lemma 13.1. Let X be a set; let B be a basis for a topology T on X. Then T equals
the collection of all unions of elements of B.

Proof.  Given a collection of elements of B, they are also elements of 7. Because T
is a topology, their union is in 7. Conversely, given U € 77, choose foreach x € U
an element B, of B suchthatx € B, CU.ThenU = Uyev Bx,so U equals a union
of elements of B. [ ]

This lemma states that every open set U in X can be expressed as a union of
basis elements. This expression for U is not, however, unique. Thus the use of the
term “basis” in topology differs drastically from its use in linear algebra, where the
equation expressing a given vector as a linear combination of basis vectors is unique.

We have described in two different ways how to go from a basis to the topology
it generates. Sometimes we need to go in the reverse direction, from a topology to a
basis generating it. Here is one way of obtaining a basis for a given topology; we shall
use it frequently.

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open
sets of X such that for each open set U of X and each x in U, there is an element C
of C such that x € C C U. Then C is a basis for the topology of X.

Proof We must show that € is a basis. The first condition for a basis is easy: Given
x € X, since X is itself an open set, there is by hypothesis an element C of € such
that x € C ¢ X. To check the second condition, let x belong to Cy N Ca, where Cy
and C; are elements of C. Since C; and C; are open, so is C; N Cy. Therefore, there
exists by hypothesis an element C3 in € such thatx € C3 C C1 N Ca.

Let 7 be the collection of open sets of X; we must show that the topology
generated by € equals the topology 7. First, note thatif U belongs to 7 andifx e U,
then there is by hypothesis an element C of € such that x € C C U. It follows that U
belongs to the topology 7, by definition. Conversely, if W belongs to the topology T,
then W equals a union of elements of C, by the preceding lemma. Since each element
of € belongs to 7 and 7 is a topology, W also belongs to 7. ]

r]-/

When topologies are given by bases, it is useful to have a criterion in terms of the
bases for determining whether one topology is finer than another. One such criterion
is the following:
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Lemma 13.3. Let B and B’ be bases for the topologies 7 and T, respectively, on
X. Then the following are equivalent:
(1) 7/ is finerthan T .
(2) For each x € X and each basis element B € B containing x, there is a basis
element B’ ¢ B’ such thatx € B’ C B.

Proof. (2) = (1). Given an element U of 7, we wish to show that U € 7. Let
x € U. Since B generates T, there is an element B € B such that x € B C U.
Condition (2) tells us there exists an element B’ € B’ such that x € B’ ¢ B. Then
x € B ' CcU,soU € 7', by definition.

(I) = (2). We are given x € X and B € B, with x € B. Now B belongs to 7
by definition and 7 C 7 by condition (1); therefore, B € 7. Since 7' is generated
by B, there is an element B’ € B such that x € B’ C B. [ |

Some students find this condition hard to remember. “Which way does the inclu-
sion go?” they ask. It may be easier to remember if you recall the analogy between
a topological space and a truckload full of gravel. Think of the pebbles as the basis
elements of the topology; after the pebbles are smashed to dust, the dust particles are
the basis elements of the new topology. The new topology is finer than the old one,
and each dust particle was contained inside a pebble, as the criterion states.

EXAMPLE 4. One can now see that the collection 8 of all circular regions in the plane
generates the same topology as the collection B’ of all rectangular regions; Figure 13.4
illustrates the proof. We shall treat this example more formally when we study metric
spaces.

O A

Figure 13.4
We now define three topologies on the real line R, all of which are of interest.

Definition. If B is the collection of all open intervals in the real line,
(a,b)={x]a<x <b},

the topolpgy generated by B is called the standard topology on the real line. Whenever
we consider R, we shall suppose it is given this topology unless we specifically state
otherwise. If B’ is the collection of all half-open intervals of the form

[a,b) ={x|a < x < b},
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where a < b, the topology generated by B’ is called the lower limit topology on R.
When R is given the lower limit topology, we denote it by R . Finally let X denote the
set of all numbers of the form 1/n, forn € Z, and let B” be the collection of all open
intervals (a, b), along with all sets of the form (a, b) — K. The topology generated
by B” will be called the K-topology on R. When R is given this topology, we denote
it by Rg.

It is easy to see that all three of these collections are bases; in each case, the
intersection of two basis elements is either another basis element or is empty. The
relation between these topologies is the following:

Lemma 13.4. The topologies of Ry and Ry are strictly finer than the standard topol-
ogy on R, but are not comparable with one another.

Proof Let T, 7, and T be the topologies of R, R, and R, respectively. Given
a basis element (a, b) for 7 and a point x of (a, b), the basis element [x, b) for 7’
contains x and lies in (a, b). On the other hand, given the basis element [x,d) for T/,
there is no open interval (a, b) that contains x and lies in [x, d). Thus 7 is strictly
finer than 7.

A similar argument applies to Rg. Given a basis element (a, b) for 7 and a
point x of (a, b), this same interval is a basis element for 77 that contains x. On the
other hand, given the basis element B = (—1, 1) — X for 7" and the point 0 of B,
there is no open interval that contains 0 and lies in B.

We leave it to you to show that the topologies of R¢ and R are not comparable.

]

A question may occur to you at this point. Since the topology generated by a
basis B may be described as the collection of arbitrary unions of elements of 3, what
happens if you start with a given collection of sets and take finite intersections of
them as well as arbitrary unions? This question leads to the notion of a subbasis for a

topology.

Definition. A subbasis S for a topology on X is a collection of subsets of X whose
union equals X. The topology generated by the subbasis S is defined to be the collec-
tion 7 of all unions of finite intersections of elements of §.

We must of course check that 7 is a topology. For this purpose it will suffice to
show that the collection B of all finite intersections of elements of § is a basis, for
then the collection 7 of all unions of elements of B is a topology, by Lemma 13.1.
Given x € X, it belongs to an element of § and hence to an element of B; this is the
first condition for a basis. To check the second condition, let

Bi=SN---NSy and By=SN---N
be two elements of 8. Their intersection

BiNBy=(SiN---NS)N(S;0---NSy)
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is also a finite intersection of elements of §, so it belongs to B.

Exercises

1. Let X.be a topological space; let A be a subset of X. Suppose that foreach x € 4
there is an open set U containing x such that U C A. Show that 4 is open in X.

2. Consider the nine topologies on the set X = {a, b, ¢} indicated in Example 1
of §12. Compare them,; that is, for each pair of topologies, determine whether
they are comparable, and if so, which is the finer.

3. Show that the collection 7, given in Example 4 of §12 is a topology on the set X.
Is the collection

T = {U | X — U is infinite or empty or all of X}

a topology on X?

4. (a) If {7} is a family of topologies on X, show that (1) 7 is a topology on X.
Is | 74 a topology on X?

(b) Let {7} be a family of topologies on X. Show that there is a unique small-
est topology on X containing all the collections 7, and a unique largest
topology contained in all 7.

(©) If X ={a,b,c}, let

T1=1{2,X,{a},{a,b}} and T2={2, X, {a},{b,c}}.
Find the smallest topology containing 77 and 77, and the largest topology
contained in 77 and 75.

5. Show that if A is a basis for a topology on X, then the topology generated by A
equals the intersection of all topologies on X that contain 4. Prove the same if
A 1s a subbasis.

6. Show that the topologies of Ry and Rg are not comparable.
7. Consider the following topologies on R:

-~

| = the standard topology,

il

J
T2 = the topology of Ry,
J

-~

il

the finite complement topology,

-~

T4 = the upper limit topology, having all sets (a, b] as basis,
Ts = the topology having all sets (—00, a) = {x | x < a) as basis.

Determine, for each of these topologies, which of the others it contains.
8. (a) Apply Lemma 13.2 to show that the countable collection

B ={(a,b) | a < b, a and b rational}
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is a basis that generates the standard topology on R.
(b) Show that the collection

€ = {[a, b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology
on R.

§14 The Order Topology

If X is a simply ordered set, there is a standard topology for X, defined using the order
relation. It is called the order fopology; in this section, we consider it and study some
of its properties.

Suppose that X is a set having a simple order relation <. Given elements a and b
of X such that ¢ < b, there are four subsets of X that are cailed the intervals deter-
mined by a and b. They are the following :

@b)y={xla<x<b}
(a,b] = {x|a <x < b},
[a,b) ={x|a <x < b},

la,bl={x|a<x<b)

The notation used here is familiar to you already in the case where X is the real line,
but these are intervals in an arbitrary ordered set. A set of the first type is called an
open interval in X, a set of the last type 1s called a closed interval in X, and sets of the
second and third types are called half-open intervals. The use of the term “open” in
this connection suggests that open intervals in X should turn out to be open sets when
we put a topology on X. And so they will.

Definition. Let X be a set with a simple order relation; assume X has more than one
element. Let B be the collection of all sets of the following types:

(1) Al open intervals (a, b) in X.

(2) Allintervals of the form [ag, b), where ag is the smallest element (if any) of X.

(3) All intervals of the form (a, bol, where by is the largest element (if any) of X.
The collection B is a basis for a topology on X, which is called the order topology.

If X has no smallest element, there are no sets of type (2), and if X has no largest
element, there are no sets of type (3).

One has to check that B satisfies the requirements for a basis. First, note that every
element x of X lies in at least one element of B: The smallest element (if any) lies
in all sets of type (2), the largest element (if any) lies in all sets of type (3), and every
other element lies in a set of type (1). Second, note that the intersection of any two sets
of the preceding types is again a set of one of these types, or is empty. Several cases
need to be checked; we leave it to you.
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EXAMPLE |.  The standard topology on R, as defined in the preceding section, is just the
order topology derived from the usual order on R.

EXAMPLE 2.  Consider the set R x R in the dictionary order; we shall denote the general
element of R x R by x x y, to avoid difficulty with notation. The set R x R has neither a
largest nor a smallest element, so the order topology on R x R has as basis the collection
of all open intervals of the form (a x b, ¢ x d) fora < ¢, and fora = ¢ and b < d. These
Fwo types of intervals are indicated in Figure 14.1. The subcollection consisting of only
intervals of the second type is also a basis for the order topology on R x R, as you can

check.

axb
axd

cxd axb

Figure 14.1

EXAMPLE 3.  The positive integers Z form an ordered set with a smallest element. The
order topology on Z.. is the discrete topology, for every one-point set is open: If n > 1,
then the one-point set {n} = (n — |, n + 1) is a basis element; and if n = 1, the one-point
set {1} = (1, 2) is a basis element.

EXAMPLE 4.  The set X = {1, 2} x Z in the dictionary order is another example of
an ordered set with a smallest element. Denoting 1 x n by a, and 2 x n by b,, we can
represent X by

ay,az,...; by, by, . ...

The order topology on X is not the discrete topology. Most one-point sets are open, but
therp is an exception—the one-point set {b1}. Any open set containing b; must contain a
basis element about b, (by definition), and any basis element containing &, contains points
of the a; sequence.

Definition. If X is an ordered set, and a is an element of X, there are four subsets

of X that are called the rays determined by a. They are the following:
(a,4+00) ={x|x > a},
(—o0,a)={x|x <a},
[a, +00) = {x | x = a},

{ }

(—o0,al ={x | x < a).
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Sets of the first two types are called open rays, and sets of the last two types are called
closed rays.

The use of the term “open” suggests that open rays in X are open sets in the order
topology. And so they are. Consider, for example, the ray (a, +00). If X has a largest
element by, then (a, +00) equals the basis element (a, bo). If X has no largest element,
then (a, +00) equals the union of all basis elements of the form (a, x), for x > a. In
either case, (a, +00) is open. A similar argument applies to the ray (—o0, a).

The open rays, in fact, form a subbasis for the order topology on X, as we now
show. Because the open rays are open in the order topology, the topology they gen-
erate is contained in the order topology. On the other hand, every basis element for
the order topology equals a finite intersection of open rays; the interval (a, b) equals
the intersection of (—o0, b) and (a, +00), while [ag, b) and (a, bg), if they exist, are
themselves open rays. Hence the topology generated by the open rays contains the
order topology.

§15 The Product Topology on X x Y

If X and ¥ are topological spaces, there is a standard way of defining 2 topology on
the cartesian product X x Y. We consider this topology now and study some of its
properties.

Definition. Let X and Y be topological spaces. The product topology on X x Yis
the topology having as basis the collection B of all sets of the form U x V, where U
is an open subset of X and V is an open subset of Y.

Let us check that B is a basis. The first condition is trivial, since X x Y is itself
a basis element. The second condition is almost as easy, since the intersection of any
two basis elements U; x Vi and Uz x V3 is another basis element. For

(U1 x V)N (Uz x Vo) = (U1 NUR) x (ViNV2),

and the latter set is a basis element because U; N U and Vi NV, are open inXand?,
respectively. See Figure 15.1.

Note that the collection B is not a topology on X x Y. The union of the two
rectangles pictured in Figure 15.1, for instance, is not a product of two sets, so it
cannot belong to B; however, itis openin X x Y.

Each time we introduce a new concept, we shall try to relate it to the concepts that
have been previously introduced. In the present case, we ask: What can one say if the
topologies on X and Y are given by bases? The answer is as follows:

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology
of Y, then the collection

D={BxC|BeBandC e C}
is a basis for the topology of X x Y.
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Figure 15.1

Proof. We apply Lemma 13.2. Given an open set W of X x Y and a point x x y
of W, by definition of the product topology there is a basis element U/ x V such that
xxyelUxV C W. Because B and C are bases for X and Y, respectively, we can
choose an element B of B such that x € B C U, and an element C of € such that
yeCCV.Thenx x y € Bx C C W. Thus the collection D meets the criterion of
Lemma 13.2, s0 D is a basis for X x Y. ]

EXAMPLE 1. We have a standard topology on R: the order topology. The product of
this topology with itself is called the standard topology on R x R = R?. It has as basis
the collection of all products of open sets of R, but the theorem just proved tells us that the
much smaller collection of all products (a, b) x {c, d) of open intervals in R will also serve
as a basis for the topology of RZ. Each such set can be pictured as the interior of a rectangle
in R?. Thus the standard topology on R? is just the one we considered in Example 2 of §13.

It is sometimes useful to express the product topology in terms of a subbasis. To
do this, we first define certain functions called projections.

Definition. Letm : X x ¥ — X be defined by the equation
7, y) = x;

let mp : X x ¥ — Y be defined by the equation
m(x, y) =y.

The maps 7; and 7 are called the projections of X x Y onto its first and second
factors, respectively.

We use the word “onto” because m; and m are surjective (unless one of the
spaces X or Y happens to be empty, in which case X x Y is empty and our whole
discussion is empty as well!).

If U is an open subset of X, then the set 711_1 (U) is precisely the set U x Y, which
isopenin X x Y. Similarly, if V is openin Y, then

i Vy=XxxV,
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which is also openin X x Y. The intersection of these two sets is the set U x V, as
indicated in Figure 15.2. This fact leads to the following theorem:

Theorem 15.2. The collection
§ = {m;(U) | U openin X} U {w;' (V)| V openin¥}

is a subbasis for the product topologyon X x Y.

1, (U)

v g (V)

[dd4aads
[

Figure 15.2

Proof. Let 7 denote the product topology on X x Y let 7' be the topology gener-
ated by §. Because every element of § belongs to 7, so do arbitrary unions of finite
intersections of elements of 8. Thus 7/ C 7. On the other hand, every basis element
U x V for the topology 7 is a finite intersection of elements of §, since

UxV=r'W)nz; (V).

Therefore, U x V belongs to 7/, sothat T C 7" as well. ]

§16 The Subspace Topology

Definition. Let X be a topological space with topology 7. If Y is a subset of X, the
collection

Ty ={YNU |U €T}

is a topology on Y, called the subspace topology. With this topology, Y is called a
subspace of X its open sets consist of all intersections of open sets of X with Y.
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It is easy to see that Ty is a topology. It contains @ and Y because
g=YN@ and Y=YNX,

where @ and X are elements of 7. The fact that it is closed under finite inlersections
and arbitrary unions follows from the equations

NN NWU,NY)y=UN---NU)HNY,
Uwann = Juany.

ae/ ael

Lemma 16.1. If B is a basis for the topology of X then the collection
By ={BNY|BeB}

is a basis for the subspace topology on Y.

Proof. Given U open in X and given y € U N'Y, we can choose an element B of 8
suchthaty € B C U.Theny € BNY C UNY. It follows from Lemma 13.2 that By
is a basis for the subspace topology on Y. ]

When dealing with a space X and a subspace Y, one needs to be careful when
one uses the term “open set”. Does one mean an element of the topology of ¥ or an
element of the topology of X? We make the following definition : If Y is a subspace
of X, we say that a set U is open in Y (or open relative to Y) if it belongs to the
topology of Y this implies in particular that it is a subset of Y. We say that U is open
in X if it belongs to the topology of X.

There is a special situation in which every set open in Y is also open in X:

Lemma 16.2. Let Y be a subspace of X. If U is openin Y and Y is openin X, then
UisopeninX.

Proof. Since U isopenin ¥, U = ¥ NV for some set V open in X. Since ¥ and V
are bothopen in X,soisY NV. ]

Now let us explore the relation between the subspace topology and the order and
product topologies. For product topologies, the result is what one might expect; for
order topologies, it is not.

Theorem 16.3. If A is a subspace of X and B is a subspace of Y, then the product
topology on A x B is the same as the topology A x B inherits as a subspace of X x Y.

Proof Theset U x V is the general basis element for X x Y, where U isopenin X
and V is open in Y. Therefore, (U x V)N (A x B) is the general basis element for the
subspace topology on A x B. Now

U xV)N(Ax B)=(UNA)x(VNB).
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Since U N A and V N B are the general open sets for the subspace topologies on A
and B, respectively, the set (U N A) x (V N B) is the general basis element for the
product topology on A x B.

The conclusion we draw is that the bases for the subspace topology on A x B and
for the product topology on A x B are the same. Hence the topologies are the same. &

Now let X be an ordered set in the order topology, and let ¥ be a subset of X. The
order relation on X, when restricted to ¥, makes Y into an ordered set. However, the
resulting order topology on Y need not be the same as the topology that Y inherits as
a subspace of X. We give one example where the subspace and order topologies on Y
agree, and two examples where they do not.

EXAMPLE 1. Consider the subset Y = [0, 1] of the real line R, in the subspace topology.

The subspace topology has as basis all sets of the form (a, b)) N'Y, where (a, b) is an open

interval in R. Such a set is of one of the following types:

(a,b) ifaandbarein?y,
[0,b) ifonlybisinY,

(a,1] ifonlyaisinY,

Yor@ ifneitheranorbisinY.

(a,bynyY =

By definition, each of these sets is open in Y. But sets of the second and third types are not
open in the larger space R.

Note that these sets form a basis for the order topology on Y. Thus, we see that in the
case of the set ¥ = [0, 1], its subspace topology (as a subspace of R) and its order topology
are the same.

EXAMPLE 2. Let Y be the subset [0, 1) U {2} of R. In the subspace topology on Y the
one-point set {2} is open, because it is the intersection of the open set (%, 3) with Y. Butin
the order topology on Y, the set {2} is not open. Any basis element for the order topology
on Y that contains 2 is of the form

(x| xeYanda <x <2}

for some a € Y; such a set necessarily contains points of ¥ less than 2.

EXAMPLE 3. Let / = [0, 1). The dictionary order on [ x 7 is just the restriction to
I x I of the dictionary order on the plane R x R. However, the dictionary order topology
on I x [ is not the same as the subspace topology on I x I obtained from the dictionary
order topology on R x R! For example, the set {172} x (12,1} is openin I x I in the
subspace topology, but not in the order topology, as you can check. See Figure 16.1.

The set I x [ in the dictionary order topology will be called the ordered square, and
denoted by I72.

The anomaly illustrated in Examples 2 and 3 does not occur for intervals or rays
in an ordered set X. This we now prove.

Given an ordered set X, let us say that a subset Y of X is convex in X if for each
pair of points a < b of Y, the entire interval (a, b) of points of X lies in Y. Note that
intervals and rays in X are convex in X.
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Theorem 16.4. Let X be an ordered set in the order topology; let Y be a subset
of X that is convex in X. Then the order topology on Y is the same as the topology Y
inherits as a subspace of X.

Proof. Consider the ray (a, +00) in X. What is its intersection with ¥? If a € ¥,
then

(a,+o0)NY ={x | x €Y and x > a};

this is an open ray of the ordered set Y. If a ¢ Y, then a is either a lower bound on ¥
or an upper bound on Y, since Y is convex. In the former case, the set (a, +00) NY
equals all of Y'; in the latter case, it is empty.

A similar remark shows that the intersection of the ray (—o0, a) with Y is either
an open ray of ¥, or Y itself, or empty. Since the sets (a, +00) N Y and (o0, a)NY
form a subbasis for the subspace topology on Y, and since each is open in the order
topology, the order topology contains the subspace topology.

To prove the reverse, note that any open ray of ¥ equals the intersection of an open
ray of X with ¥, so it is open in the subspace topology on Y. Since the open rays of ¥
are a subbasis for the order topology on Y, this topology is contained in the subspace
topology. n

To avoid ambiguity, let us agree that whenever X is an ordered set in the order
topology and Y is a subset of X, we shall assume that Y is given the subspace topology
unless we specifically state otherwise. If ¥ is convex in X, this is the same as the order
topology on Y, otherwise, it may not be.

Exercises

1. Show that if Y is a subspace of X, and A is a subset of Y, then the topology A
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10.

§17

inherits as a subspace of Y is the same as the topology it inherits as a subspace
of X.

If 7 and 7' are topologies on X and T is strictly finer than 77, what can you
say about the corresponding subspace topologies on the subset Y of X?

. Consider the set Y = [—1, 1] as a subspace of R. Which of the following sets

are open in Y? Which are open in R?

A={x|j<kxl<1)
B={x|}<Ixl<1],
C={x|3=<lxl<1}
D={(x|3=<x| <1},

E={x|0<|x| <landl/x ¢ Z4}.

. Amap f : X — Y is said to be an open map if for every open set U of X, the

set f(U)isopenin Y. Showthatm : X x ¥ — Xandm : X x ¥ — Y are
open maps.

. Let X and X’ denote a single set in the topologies 7 and 7, respectively; let Y

and Y’ denote a single set in the topologies U and U’', respectively. Assume

these sets are nonempty.

(2) Show thatif 7/ D 9 and U’ D U, then the product topology on X' x ¥’ is
finer than the product topology on X x Y.

(b) Does the converse of () hold? Justify your answer.

. Show that the countable collection

{(a,b) x (c,d) | a <bandc < d,and a, b, c, d are rational}

is a basis for R2.

. Let X be an ordered set. If Y is a proper subset of X that is convex in X, does it

follow that Y is an interval or aray in X?

. If L is a straight line in the plane, describe the topology L inherits as a subspace

of R x R and as a subspace of R, x Re. In each case it is a familiar topology.

. Show that the dictionary order topology on the set R x R is the same as the

product topology Rz x R, where R, denotes R in the discrete topology. Compare
this topology with the standard topology on R2.

Let I = [0, 1]. Compare the product topology on I x I, the dictionary order
topology on I x I, and the topology I x I inherits as a subspace of R x R in the
dictionary order topology.

Closed Sets and Limit Points

Now that we have a few examples at hand, we can introduce some of the basic concepts
associated with topological spaces. In this section, we treat the notions of closed set,
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closure of a set, and limit point. These lead naturally to consideration of a certain
axiom for topological spaces called the Hausdorff axiom.

Closed Sets
A subset A of a topological space X is said to be closed if the set X — A is open.
ExAMPLE 1. The subset [a, b} of R is closed because its complement
R —[a, b} = (=00, a) U (b, +00),
is open. Similarly, [a, +00) is closed, because its complement (—o0, a) is open. These

facts justify our use of the terms “closed interval” and “closed ray.” The subset [a, b) of R
is neither open nor closed.

EXAMPLE 2.  In the plane R?, the set
{xxy|x>0andy > 0}
is closed, because its complement is the union of the two sets
(—00,0) x R and R x (—o0,0),

each of which is a product of open sets of R and is, therefore, open in R2.

EXAMPLE 3. In the finite complement topology on a set X, the closed sets consist of X
itself and all finite subsets of X.

ExXAMPLE 4. In the discrete topology on the set X, every set is open; it follows that
every set is closed as well.

EXAMPLE 5.  Consider the following subset of the real line:
Y=[0,1U(®3),

in the subspace topology. In this space, the set [0, 1] is open, since it is the intersection of
the open set (—%, %) of R with Y. Similarly, (2, 3) is open as a subset of Y; it is even open
as a subset of R. Since [0, 1] and (2, 3) are complements in Y of each other, we conclude
that both [0, 1] and (2, 3) are closed as subsets of Y.

These examples suggest that an answer to the mathematician’s riddle: “How is
a set different from a door?” should be: “A door must be either open or closed, and
cannot be both, while a set can be open, or closed, or both, or neither!”

The collection of closed subsets of a space X has properties similar to those satis-
fied by the collection of open subsets of X:
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Theorem 17.1. Let X be a topological space. Then the following conditions hold:
(1) @ and X are closed.
(2) Arbitrary intersections of closed sets are closed.
(3) Finite unions of closed sets are closed.

Proof. (1) @ and X are closed because they are the complements of the open sets X

and @, respectively.
(2) Given a collection of closed sets {Aa}aes, We apply DeMorgan’s law,

X - ﬂAa =J&x - 4.
acl a€e/

Since the sets X — A, are open by definition, the right side of this equation represents
an arbitrary union of open sets, and is thus open. Therefore, () A is closed.
(3) Similarly, if A; isclosed fori =1, ..., n, consider the equation

-
-

x| Ja =\x - Ap.

i i=1

The set on the right side of this equation is a finite intersection of open sets and is
therefore open. Hence | J A; is closed. [ ]

Instead of using open sets, one could just as well specify a topology on a space by
giving a collection of sets (to be called “closed sets™) satisfying the three properties of
this theorem. One could then define open sets as the complements of closed sets and
proceed just as before. This procedure has no particular advantage over the one we
have adopted, and most mathematicians prefer to use open sets to define topologies.

Now when dealing with subspaces, one needs to be careful in using the term
“closed set.” If ¥ is a subspace of X, we say that a set A is closed in Y if A is a
subset of ¥ and if A is closed in the subspace topology of ¥ (thatis, if Y — A is open
in Y). We have the following theorem:

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if
it equals the intersection of a closed set of X with Y.

Proof ~Assume that A = CNY, where C is closed in X. (See Figure 17.1.) Then
X — Cis open in X, so that (X — C) NY is openin ¥, by definition of the subspace
topology. But (X —C)NY =Y — A. Hence Y — A is open in Y, so that A is closed in
Y. Conversely, assume that A is closed in Y. (See Figure 17.2.) Then ¥ — A is open
in ¥, so that by definition it equals the intersection of an open set U of X with Y. The
set X — U is closed in X, and A = Y N (X — U), so that A equals the intersection of
a closed set of X with Y, as desired. | ]

A set A that is closed in the subspace ¥ may or may not be closed in the larger
space X. As was the case with open sets, there is a criterion for A to be closed in X;
we leave the proof to you:
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Theorem 17.3. Let Y be a subspace of X. If AisclosedinY andY is closed in X,
then A is closed in X.

Closure and Interior of a Set

Given a subset A of a topological space X, the interior of A is defined as the union of
all open sets contained in A, and the closure of A is defined as the intersection of all
closed sets containing A.

The interior of A is denoted by Int A and the closure of A is denoted by Cl1 A or
by A. Obviously Int A is an open set and A is a closed set; furthermore,

IntA C A C A

If A is open, A = Int A; while if A is closed, A = A.

We shall not make much use of the interior of a set, but the closure of a set will be
quite important.

When dealing with a topological space X and a subspace Y, one needs to exercise
care in taking closures of sets. If A is a subset of Y, the closure of A in ¥ and the
closure of A in X will in general be different. In such a situation, we reserve the
notation A to stand for the closure of A in X. The closure of A in Y can be expressed
in terms of A, as the following theorem shows:

Theorem 17.4. Let Y be a subspace of X; let A be a subset of Y; let A denote the
closure of A in X. Then the closure of AinY equals ANY.

Proof. Let B denote the closure of A in Y. The set Aisclosed in X,s0 ANY is
closed in ¥ by Theorem 17.2. Since ANY contains A, and since by definitior1 B equals
the intersection of all closed subsets of Y containing A, we must have B C (ANY).
On the other hand, we know that B is closed in Y. Hence by Theorem 17.2,
B=C ﬂ_Y for some set C closed in X. Then C is a closed set of X containing A;
be_cause A is the intersection of all such closed sets, we conclude that A C C. Then
(AnY)c(CnNnY)=B28. ]
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The definition of the closure of a set does not give us a convenient way for actually
finding the closures of specific sets, since the collection of all closed sets in X, like
the collection of all open sets, is usually much too big to work with. Another way of
describing the closure of a set, useful because it involves only a basis for the topology
of X, is given in the following theorem.

First let us introduce some convenient terminology. We shall say that a set A
intersects a set B if the intersection A N B is not empty.

Theorem 17.5. Let A be a subset of the topological space X.
(a) Then x € A if and only if every open set U containing x intersects A.
(b) Supposing the topology of X is given by a basis, then x € A if and only if every
basis element B containing x intersects A.

Proof. Consider the statement in (a). It is a statement of the form P & Q. Let
us transform each implication to its contrapositive, thereby obtaining the logically
equivalent statement (not P) < (not Q). Written out, it is the following:

x ¢ A <= there exists an open set U/ containing x that does not intersect A.

In this form, our theorem is easy to prove. If x is not in A, theset U = X — Ais an
open set containing x that does not intersect A, as desired. Conversely, if there exists
an open set U/ containing x which does not intersect A, then X — U is a closed set
containing A. By definition of the closure A, the set X — U must contain A; therefore,
x cannot be in A.

Statement (b) follows readily. If every open set containing x intersects A, so does
every basis element B containing x, because B is an open set. Conversely, if every
basis element containing x intersects A, so does every open set U containing x, be-
cause U contains a basis element that contains x. n

Mathematicians often use some special terminology here. They shorten the state-
ment “U is an open set containing x” to the phrase

“U is a neighborhood of x.”
Using this terminology, one can write the first half of the preceding theorem as follows:

If A is a subset of the topological space X, then x € A if and only if every
neighborhood of x intersects A.

EXAMPLE 6. Let X be the real line R. If A = (0, 1], then A = [0,1), for every
neighborhood of 0 intersects A, while every point outside [0, 1] has a neighborhood disjoint
from A. Similar arguments apply to the following subsets of X:

fB={l/n|neZ,) thn B={0)UB.IfC=(0}U(l,2),then C ={0}U[1,2]
If Q is the set of rational numbers, then Q = R. If Z is the set of positive integers, then
Z4 = Z,. If R, is the set of positive reals, then the closure of R is the set Ry U {0}.
(This is the reason we introduced the notation R for the set Ry U {0}, back in §2.)
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EXAMPLE 7. Consider the subspace ¥ = (0, 1] of the real line R. The set A = (0, %) is
a subset of Y its closure in R is the set [0, %], and its closure in Y is the set [0, %] nY =
©, 11

Some mathematicians use the term “neighborhood” differently. They say that A
is a neighborhood of x if A merely contains an open set containing x. We shall not
follow this practice.

Limit Points

There is yet another way of describing the closure of a set, a way that involves the
important concept of limit point, which we consider now.

If A is a subset of the topological space X and if x is a point of X, we say thatx is a
limit point (or “cluster point,” or “point of accumulation™) of A if every neighborhood
of x intersects A in some point other than x itself. Said differently, x is a limit point
of A if it belongs to the closure of A — {x}. The point x may lie in A or not; for this
definition it does not matter.

EXAMPLE 8.  Consider the real line R. If A = (0, 1], then the point 0 is a limit point
of A and so is the point % In fact, every point of the interval [0, 1] is a limit point of A, but
no other point of R is a limit point of A.

If B={l/n|n € Z,}, then 0is the only limit point of B. Every other point x of R has
a neighborhood that either does not intersect B at all, or it intersects B only in the point x
itself. If C = {0} U (1, 2), then the limit points of C are the points of the interval [1, 2]. If
Q is the set of rational numbers, every point of R is a limit point of Q. If Z,. i8 the set of
positive integers, no point of R is a limit point of Z. If Ry is the set of positive reals, then
every point of {0} U R, is a limit point of R .

Comparison of Examples 6 and 8 suggests a relationship between the closure ofa
set and the limit points of a set. That relationship is given in the following theorem:

Theorem 17.6. Let A be a subset of the topological space X ; let A’ be the set of all
limit points of A. Then

A=AUA".

Proof If xisin A’, every neighborhood of x intersects A (in a point different from x).
Therefore, by Theorem 17.5, x belongs to A. Hence A’ C A. Since by definition
A C A, it follows that AU A’ C A.

To demonstrate the reverse inclusion, we let x be a point of A and show that
x € AU A If x happens to lie in A, it is trivial that x € AU A’; suppose that x
does not lie in A. Since x € A, we know that every neighborhood U of x intersects A;
because x ¢ A, the set U must intersect A in a point different from x. Then x € A,
so that x € AU A’, as desired. [ ]
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Corollary 17.7. A subset of a topological space is closed if and only if it contains all
its limit points.

Proof The set A is closed if and only if A = A, and the latter holds if and only if
A C A »

Hausdorff Spaces

One’s experience with open and closed sets and limit points in the real line and the
plane can be misleading when one considers more general topological spaces. For
example, in the spaces R and R?, each one-point set {xo} is closed. This fact is easily
proved; every point different from xo has a neighborhood not intersecting {xo}, so
that {xo) is its own closure. But this fact is not true for arbitrary topological spaces.
Consider the topology on the three-point set {a, b, ¢} indicated in Figure 17.3. In this
space, the one-point set {b} is not closed, for its complement is not open.

acB

Figure 17.3

Similarly, one’s experience with the properties of convergent sequences in R and
R? can be misleading when one deals with more general topological spaces. In an
arbitrary topological space, one says that a sequence xy, x2, ... of points of the space
X converges to the point x of X provided that, corresponding to each neighborhood U
of x, there is a positive integer N such that x, € U foralln > N. In R and R?, a
sequence cannot converge to more than one point, but in an arbitrary space, it can. In
the space indicated in Figure 17.3, for example, the sequence defined by setting x, = b
for all n converges not only to the point b, but also to the point a and to the point c!

Topologies in which one-point sets are not closed, or in which sequences can con-
verge to more than one point, are considered by many mathematicians to be somewhat
strange. They are not really very interesting, for they seldom occur in other branches
of mathematics. And the theorems that one can prove about topological spaces are
rather limited if such examples are allowed. Therefore, one often imposes an addi-
tional condition that will rule out examples like this one, bringing the class of spaces
under consideration closer to those to which one’s geometric intuition applies. The
condition was suggested by the mathematician Felix Hausdorff, so mathematicians
have come to call it by his name.

Definition. A topological space X is called a Hausdorff space if for each pair xy, x2
of distinct points of X, there exist neighborhoods Uy, and U3 of x| and x3, respectively,
that are disjoint.
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Theorem 17.8. Every finite point set in a Hausdorff space X is closed.

Proof. It suffices to show that every one-point set {xo} is closed. If x is a point of X
different from xq, then x and xo have disjoint neighborhoods U and V, respectively.
Since U does not intersect {xo}, the point x cannot belong to the closure of the set {xo}.
As a result, the closure of the set {xg} is {xo} itself, so that it is closed. ]

The condition that finite point sets be closed is in fact weaker than the Hausdorff
condition. For example, the real line R in the finite complement topology is not a
Hausdorff space, but it is a space in which finite point sets are closed. The condition
that finite point sets be closed has been given a name of its own: it is called the T ax-
iom. (We shall explain the reason for this strange terminology in Chapter 4.) The
T, axiom will appear in this book in a few exercises, and in just one theorem, which is
the following:

Theorem 17.9. Let X be a space satisfying the Ty axiom; let A be a subset of X.
Then the point x is a limit point of A if and only if every neighborhood of x contains
infinitely many points of A.

Proof  If every neighborhood of x intersects A in infinitely many points, it certainly
intersects A in some point other than x itself, so that x is a limit point of A.

Conversely, suppose that x is a limit point of A, and suppose some neighbor-
hood U of x intersects A in only finitely many points. Then U also intersects A — {x}
in finitely many points; let {xi, ..., X} be the points of U N (A — {x}). The set
X — {x1,..., xn}is an open set of X, since the finite point set {x1, ..., xm} is closed;
then

UNnX —{x,..., xm})

is a neighborhood of x that intersects the set A — {x} not at all. This contradicts the
assumption that x is a limit point of A. u

One reason for our lack of interest in the T| axiom is the fact that many of the
interesting theorems of topology require not just that axiom, but the full strength of
the Hausdorff axiom. Furthermore, most of the spaces that are important to mathe-
maticians are Hausdorff spaces. The following two theorems give some substance to
these remarks.

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of X converges
to at most one point of X.

Proof. Suppose that x, is a sequence of points of X that converges to x. Ify #x,
let I/ and V be disjoint neighborhoods of x and y, respectively. Since U contains x,
for all but finitely many values of n, the set V cannot. Therefore, x,, cannot converge
to y. u
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If the sequence x, of points of the Hausdorff space X converges to the point x
of X, we often write x, — x, and we say that x is the limit of the sequence x,,.
The proof of the following result is left to the exercises.

Theorem 17.11.  Every simply ordered set is a Hausdorff space in the order topology.
The product of two Hausdorff spaces is a Hausdorff space. A subspace of a Hausdorff
space is a Hausdorff space.

The Hausdorff condition is generally considered to be a very mild extra condition
to impose on a topological space. Indeed, in a first course in topology some mathe-
maticians go so far as to impose this condition at the outset, refusing to consider spaces
that are not Hausdorff spaces. We shall not go this far, but we shall certainly assume
the Hausdorff condition whenever it is needed in a proof without having any qualms
about limiting seriously the range of applications of the results.

The Hausdorff condition is one of a number of extra conditions one can impose on
a topological space. Each time one imposes such a condition, one can prove stronger
theorems, but one limits the class of spaces to which the theorems apply. Much of the
research that has been done in topology since its beginnings has centered on the prob-
lem of finding conditions that will be strong enough to enable one to prove interesting
theorems about spaces satisfying those conditions, and yet not so strong that they limit
severely the range of applications of the results.

We shall study a number of such conditions in the next two chapters. The Haus-
dorff condition and the T} axiom are but two of a collection of conditions similar to one
another that are called collectively the separation axioms. Other conditions include the
countability axioms, and various compactness and connectedness conditions. Some of
these are quite stringent requirements, as you will see.

Exercises

1. Let C be a collection of subsets of the set X. Suppose that @ and X are in C,
and that finite unions and arbitrary intersections of elements of € are in C. Show
that the collection

T={X-C|CeC}

is a topology on X.
2. Show that if A is closed in Y and Y is closed in X, then A is closed in X .
3. Show thatit' A isclosed in X and B is closedin Y, then A x Bisclosedin X x Y.

4. Show thatif U is openin X and A is closed in X, then U — A is open in X, and
A —Uisclosedin X.

S. Let X be an ordered set in the order topology. Show that (a, b) C [a, b]. Under
what conditions does equality hold?
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Let A, B, and A, denote subsets of a space X. Prove the following:
(a) fAC B, then A C B.

(b) AUB=AUB.

© U A D U Aq; give an example where equality fails.

. Criticize the following “proof” that | Ae C |J Ag: if {Ag) is 2 collection of

sets in X and if x € {JAq, then every neighborhood U of x intersects | J Aq.
Thus / must intersect some A4, so that x must belong to the closure of some A,.
Therefore, x € | Aq.
Let A, B, and A, denote subsets of a space X. Determine whether the following
equations hold; if an equality fails, determine whether one of the inclusions D
or C holds.
(@) ANB=ANBSB.
® (A =N
() A—-B=A-B.
Let A C X and B C Y. Show that in the space X x Y,

AxB=AxB8.
Show that every order topology is Hausdorff.
Show that the product of two Hausdorff spaces is Hausdorff.
Show that a subspace of a Hausdorff space is Hausdorft.
Show that X is Hausdorff if and only if the diagonal A = {(x x x | x € X} is
closed in X x X.
In the finite complement topology on R, to what point or points does the se-
quence x, = 1/n converge?

Show the T; axiom is equivalent to the condition that for each pair of points of X,
each has a neighborhood not containing the other.

Consider the five topologies on R given in Exercise 7 of §13.

(a) Determine the closure of the set K = {1/n | n € Z} under each of these
topologies.

(b) Which of these topologies satisfy the Hausdorff axiom? the 7} axiom?

Consider the lower limit topology on R and the topology given by the basis €
of Exercise 8 of §13. Determine the closures of the intervals A = (0, V2) and

B = (+/2, 3) in these two topologies.

Determine the closures of the following subsets of the ordered square:
A={(1/n) x0|neZy),
B={(1-1/n)yx}|neZy,
C={xx0|0<x<1}
D:{xx%|0<x<l),

E={%xy]0<y<l)‘
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19. If A C X, we define the boundary of A by the equation
BdA=ANX- A).

(a) Show that Int A and Bd A are disjoint, and A=IntAUBdA.

(b) Show that Bd A = @ & A is both open and closed.

() Show that U is open < BdU = U — U.

(d) If U is open, is it true that U = Int(U)? Justify your answer.
20. Find the boundary and the interior of each of the following subsets of R%:

@ A={xxy|y=0}

) B={xxy|x>0andy#0}

(c) C=AUB

(d) D= {x x y| x is rational}

@ E=f{xxy|0<x?-y><1}

(O F={xxyl|lx#0andy < 1/x}

*21. (Kuratowski) Consider the collection of all subsets A of the topological space X.
The operations of closure A — A and complementation A — X — A are func-
tions from this collection to itself.

(a) Show that starting with a given set A, one can form no more than 14 distinct
sets by applying these two operations successively.

(b) Find a subset A of R (in its usual topology) for which the maximum of 14 is
obtained.

8§18 Continuous Functions

The concept of continuous function is basic to much of mathematics. Continuous
functions on the real line appear in the first pages of any calculus book, and continuous
functions in the plane and in space follow not far behind. More general kinds of
continuous functions arise as one goes further in mathematics. In this section, we shall
formulate a definition of continuity that will include all these as special cases, and we
shall study various properties of continuous functions. Many of these properties are
direct generalizations of things you learned about continuous functions in calculus and
analysis.

Continuity of a Function

Let X and Y be topological spaces. A function f : X — Y is said to be continuous if
for each open subset V of Y, the set f~!(V) is an open subset of X.

Recall that £~1(V) is the set of all points x of X for which f(x) € V;itis empty
if V does not intersect the image set f(X) of f.

Continuity of a function depends not only upon the function f itself, but also on
the topologies specified for its domain and range. If we wish to emphasize this fact,
we can say that f is continuous relative to specific topologies on X and Y.
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Let us note that if the topology of the range space Y is given by a basis B, then to
prove continuity of f it suffices to show that the inverse image of every basis element
is open: The arbitrary open set V of Y can be written as a union of basis elements

v=_J B

aet

Then
o= s,

aet

so that f~1(V) is open if each set £~ Y(By,) is open.

If the topology on Y is given by a subbasis S, to prove continuity of f it will even
suffice to show that the inverse image of each subbasis element is open: The arbitrary
basis element B for Y can be written as a finite intersection S; N --- N S, of subbasis
elements; it follows from the equation

B =isnn-n NS

that the inverse image of every basis element is open.

EXAMPLE |.  Let us consider a function like those studied in analysis, a “real-valued
function of a real variable,”

fR— R

In analysis, one defines continuity of f via the “e-8 definition,” a bugaboo over the years
for every student of mathematics. As one would expect, the ¢-§ definition and ours are
equivalent. To prove that our definition implies the ¢-§ definition, for instance, we proceed
as follows:

Given xg in R, and given ¢ > 0, the interval V = ( f(xo) — ¢, f(xo) +¢) is an open set
of the range space R. Therefore, f~!(V) is an open set in the domain space R. Because
f£~Y(V) contains the point xg, it contains some basis element (a, &) about xo. We choose 8
to be the smaller of the two numbers xg — a and b — xg. Then if {x — xg| < 8, the point x
must be in (a, b), so that f(x) € V,and | f(x) — f(x0)| < ¢, as desired.

Proving that the ¢-8 definition implies our definition is no harder; we leave it to you.
We shall return to this example when we study metric spaces.

EXAMPLE 2.  In calculus one considers the property of continuity for many kinds of
functions. For example, one studies functions of the following types:

f:R — R (curves in the plane)

f:R — R* (curves in space)

f: RZ—R (functions f(x, y) of two real variables)

f: R —R (functions f(x, y, z) of three real variables)

f: R? — R?  (vector fields v(x, ¥) in the plane).

Each of them has a notion of continuity defined for it. Our general definition of continuity
includes all these as special cases; this fact will be a consequence of general theorems we
shall prove concerning continuous functions on product spaces and on metric spaces.
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EXAMPLE 3. Let R denote the set of real numbers in its usual topology, and let R,
denote the same set in the lower limit topology. Let

fTR— R,

be the identity function; f(x) = x for every real number x. Then f is not a continuous
function; the inverse image of the open set {a, b) of R, equals itself, which is not open
in R. On the other hand, the identity function

g:Rge— R
is continuous, because the inverse image of (a, b) is itself, which is open in Re.

In analysis, one studies several different but equivalent ways of formulating the
definition of continuity. Some of these generalize to arbitrary spaces, and they are
considered in the theorems that follow. The familiar “¢-6” definition and the “con-
vergent sequence definition” do not generalize to arbitrary spaces; they will be treated
when we study metric spaces.

Theorem 18.1. Let X and Y be topological spaces; let f : X — Y. Then the
following are equivalent:

(1) f is continuous.

(2) Forevery subset A of X, one has f(fi) C m

(3) Forevery closed set B of Y, the set f_1 (B) is closed in X.

(4) For each x € X and each neighborhood V of f(x), there is a neighborhood U
of x such that f(U) C V.

If the condition in (4) holds for the point x of X, we say that f is continuous at
the point x.
Proof. We show that (1) = (2) = (3) = (1) and that (1) = (4) = (D).

(1) = (2). Assume that f is continuous. Let A be a subset of X. We show that if
x € A, then f(x) € f(A). Let V be a neighborhood of f(x). Then f~1(V) is an open
set of X containing x; it must intersect A in some point y. Then V intersects f(A) in
the point f(y), so that f(x) € f(A), as desired.

(2) = (3). Let Bbeclosed in Y and let A = f‘l(B). We wish to prove that A
is closed in X; we show that A = A. By elementary set theory, we have f(A) =
FUFYBY) C B. Therefore, if x € A,

fx) e f(Ac f(A) c B=8,

sothatx € f~1(B) = A. Thus A C A, sothat A = A, as desired.
(3) = (1). Let V be anopensetof Y. Set B=7Y — V. Then

== v=x- 1w

Now B isaclosed set of Y. Then f~!(B) is closed in X by hypothesis, so that f~1(V)
is open in X, as desired.
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(1) = (4). Let x € X and let V be a neighborhood of f(x). Then the set
U = f~1(V) is a neighborhood of x such that f(U) C V.

(4) = (1). Let V be an open set of ¥; let x be a point off_l(V). Then f(x) e V,
so that by hypothesis there is a neighborhood U, of x such that f(Ux) C V. Then
U, C £~ (V). It follows that f~1(V) can be written as the union of the oper1 sets Uy,
so that it is open. =

Homeomorphisms

Let X and Y be topological spaces; let f : X — ¥ be a bijection. If both the function f
and the inverse function

Flir 5 x

are continuous, then f is called a homeomorphism.

The condition that f~! be continuous says that for each open set U of X, the
inverse image of U under the map f -1 .Y — X isopenin Y. But the inverse
image of U under the map f~! is the same as the image of U under the map f. See
Figure 18.1. So another way to define a homeomorphism is to say that it is a bijective
correspondence f : X — Y such that f(U) is open if and only if U is open.

Figure 18.1

This remark shows that a homeomorphism f : X — Y gives us a bijective cor-
respondence not only between X and Y but between the collections of open sets of X
and of Y. As a result, any property of X that is entirely expressed in terms of the topol-
ogy of X (that is, in terms of the open sets of X) yields, via the corresponderice f, the
corresponding property for the space Y. Such a property of X is called a topological
property of X.

You may have studied in modern algebra the notion of an isomorphism between al-
gebraic objects such as groups or rings. An isomorphism is a bijective correspondence
that preserves the algebraic structure involved. The analogous concept in topology is
that of homeomorphism; it is a bijective correspondence that preserves the topological
structure involved.

Now suppose that f : X — Y is an injective continuous map, where X and Y
are topological spaces. Let Z be the image set f(X), considered as a subspace of ¥;
then the function f’ : X — Z obtained by restricting the range of f is bijective. If f*
happens to be a homeomorphism of X with Z, we say thatthemap f : X — Yisa
topological imbedding, ot simply an imbedding, of X in Y.
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EXAMPLE 4.  The function f : R — R given by f(x) = 3x 4 1 is a homeomorphism.
See Figure 18.2. If we define g : R — R by the equation

1
=-(y—1
g =30 )
then one can check easily that f(g(y)) = y and g(f(x)) =x for all real numbers x and y.
It follows that f is bijective and that g = f~ ! the continuity of f and g is a familiar result

from calculus.

EXAMPLE 5. The function F : (—1, 1) — R defined by

F =
@ =71_3
is a homeomorphism. See Figure 18.3. We have already noted in Example 9 of §3 that F
is a bijective order-preserving correspondence; its inverse is the function G defined by

2y

Gy = ——2
V= a7

The fact that F is a homeomorphism can be proved in two ways. One way is to note that
because F is order preserving and bijective, F carries a basis element for the order topology
in (=1, 1) onto a basis element for the order topology in R and vice versa. As aresult, F is
automatically a homeomorphism of (—1, 1) with R (both in the order topology). Since the
order topology on (1, 1) and the usual (subspace) topology agree, Fisa homeomorphism
of (=1, 1) with R.

F(x) =

fix)=3x+1
(x) e

/

A second way to show F a homeomorphism is to use the continuity of the algebraic
functions and the square-root function to show that both F and G are continuous. These
are familiar facts from calculus.

N

Figure 18.2 Figure 18.3

EXAMPLE 6. A bijective function f : X — Y can be continuous without being a home-
omorphism. One such function is the identity map g : R¢ — R considered in Example 3.
Another is the following: Let S! denote the unit circle,

St=rxyls+y =1),
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considered as a subspace of the plane RZ, and let
F:l0,)— s

be the map defined by f () = (cos 27¢, sin2xt). The fact that f is bijective and contmu-
ous follows from familiar properties of the trigonometric functions. But the function £
is not continuous. The image under f of the open set U = [0, 4) of the domain, for in-
stance, is not open in S1, for the point p = f(0) lies in no open set V of R? such that
VNSt ¢ fU). See Figure 18.4.

tHu)
u f
E% 9 * P
01 1
4
Figure 18.4

ExaMPLE 7.  Consider the function
g:00,) —R?

obtained from the function f of the preceding example by expanding the range. The map g
is an example of a continuous injective map that is not an imbedding.

Constructing Continuous Functions

How does one go about constructing continuous functions from one topological space
to another? There are a number of methods used in analysis, of which some generalize
to arbitrary topological spaces and others do not. We study first some constructions
that do hold for general topological spaces, deferring consideration of the others until
later.

Theorem 18.2 (Rules for constructing continuous functions). LetX,Y, and Z be
topological spaces.
(a) (Constant function) If f : X — Y maps all of X into the single point yo of Y,
then f is continuous.
(b) (Inclusion) If A is a subspace of X, the inclusion function j : A — X is contin-
uous.
(c) (Composites) If f : X — Y and g : Y — Z are continuous, ther the map
go f: X — Z is continuous.
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(d) (Restricting the domain) If f : X — Y is continuous, and if A is a subspace
of X, then the restricted function f|A : A — Y is continuous.

(e) (Restricting or expanding the range) Let f : X — ¥ be continuous. If Z is a
subspace of ¥ containing the image set f(X), then the functiong : X — Z
obtained by restricting the range of f is continuous. If Z is a space having Y as
a subspace, then the function h : X — Z obtained by expanding the range of f
is continuous.

() (Local formulation of continuity) The map f : X — Y is continuous if X can be
written as the union of open sets Uy such that f|U, is continuous foreach «.

Proof (a) Let f(x) = yo forevery x in X. Let V be open in Y. The set FHvy
equals X or @, depending on whether V contains yp or not. In either case, it is open.
(b) If U is open in X, then j~Y(U) = U N A, which is open in A by definition of
the subspace topology.
(¢) If U is open in Z, then g~!(U) is open in ¥ and F g~ HU)) is open in X.
But

ey =g HTHW,

by elementary set theory.

(d) The function f]A equals the composite of the inclusion map j : A — X and
the map f : X — Y, both of which are continuous.

(e) Let f : X — Y be continuous. If f(X) C Z C Y, we show that the function
g : X — Z obtained from f is continuous. Let B be openin Z. Then B = Z NU for
some open set U of Y. Because Z contains the entire image set f(X),

) =¢7B),

by elementary set theory. Since f ~L(U) is open, so is g~ UB).

To show # : X — Z is continuous if Z has ¥ as a subspace, note that k is the
composite of the map f : X — Y and the inclusion map j : Y - Z.

(f) By hypothesis, we can write X as a union of open sets Uy, such that f|Uy is
continuous for each .. Let V be an open setin Y. Then

VY N UL = (FIUDH V),

because both expressions represent the set of those points x lying in U, for which
f(x) € V. Since f|Uy is continuous, this set is open in Uy, and hence open in X. But

oy =y vnta,

so that f~1(V) is also open in X. [ ]

Theorem 18.3 (The pasting lemma). Let X = AU B, where A and B are closed
inX. Let f: A — Y andg : B — Y be continuous. If f(x) = g(x) for every
x € AN B, then f and g combine to give a continuous function h © X — Y, defined
by setting h(x) = f(x) ifx € A, andh(x) = g(x) ifx € B.
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Proof. Let C be aclosed subset of Y. Now
h 0 = FTHOVgTHO),

by elementary set theory. Since f is continuous, f ~1(C) is closed in A and, therefore,
closed in X. Similarly, g~!(C) is closed in B and therefore closed in X. Their union
h~1(C) is thus closed in X. ]

This theorem also holds if A and B are open sets in X; this is just a special case of
the “local formulation of continuity” rule given in preceding theorem.

EXAMPLE 8. Let us define a function & : R — R by setting

h(x) = x forx <0,
x/2 forx=>0.

Each of the “pieces” of this definition is a continuous function, and they agree on the
overlapping part of their domains, which is the one-point set {0}. Since their domains are
closed in R, the function h is continuous. One needs the “pieces” of the function to agree
on the overlapping part of their domains in order to have a function at all. The equations

k(x) = x—2 forx <0,
x+2 forx >0,

for instance, do not define a function. On the other hand, one needs some limitations on
the sets A and B to guarantee continuity. The equations
x—2 forx <0,
I(x) =
x+2 forx =0,
for instance, do define a function / mapping R into R, and both of the pieces are continuous.

But ! is not continuous; the inverse image of the open set (1, 3), for instance, is the nonopen
set (0, 1). See Figure 18.5.

3

Figure 18.5
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Theorem 18.4 (Maps into products). Let f : A — X x Y be given by the equation
fl@) = (fila), fala)).
Then f is continuous if and only if the functions
fi:A— X and fr:A—7Y

are continuous.

The maps f) and f, are called the coordinate functions of f.
Proof Letm :X xY — Xandm : X x Y — Y be projections onto the first and
second factors, respectively. These maps are continuous. For YUy =U x Y and
Ty 1(V) = X x V, and these sets are open if U and V are open. Note that for each
acA,

fila) =m(f@) and  fola) = m(f(@).

If the function f is continuous, then f; and f, are composites of continuous func-
tions and therefore continuous. Conversely, suppose that f; and f, are continuous. We
show that for each basis element U x V for the topology of X x Y, its inverse image
f"(U x V) is open. A point a is in F~YU x V)ifand only if f(a) € U x V, that
is, if and only if fi(a) € U and fa(a) € V. Therefore,

fluxvy=frlann ;7).
Since both of the sets fl_l(U ) and fz_1 (V) are open, so is their intersection. [ |

There is no useful criterion for the continuity of amap f : A x B — X whose
domain is a product space. One might conjecture that f is continuous if it is continuous
“in each variable separately,” but this conjecture is not true. (See Exercise 12.)

EXAMPLE9. In calculus, a parametrized curve in the plane is defined to be a continuous
map f : [a,b] — R2. It is often expressed in the form f(r) = (x(f), y(#)); and one
frequently uses the fact that f is a continuous function of # if both x and y are. Similarly,
a vector field in the plane

v(x,y) = Plx, i+ Q(x, y)j
= (P(x,y), Q(x,y)

is said to be continuous if both P and Q are continuous functions, or equivalently, if v is
continuous as a map of R? into R2. Both of these statements are simply special cases of
the preceding theorem.

One way of forming continuous functions that is used a great deal in analysis is to
take sums, differences, products, or quotients of continuous real-valued functions. It
is a standard theorem that if f, g : X — R are continuous, then f + g, f — g, and
f - g are continuous, and f/g is continuous if g(x) # 0 for all x. We shall consider
this theorem in §21.
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Yet another method for constructing continuous functions that 1s familiar from
analysis is to take the limit of an infinite sequence of functions. There is a theorem to
the effect that if a sequence of continuous real-valued functions of a real variable con-
verges uniformly to a limit function, then the limit function is necessarily continuous.
This theorem is called the Uniform Limit Theorem. 1t is used, for instance, to demon-
strate the continuity of the trigonometric functions, when one defines these functions
rigorously using the infinite series definitions of the sine and cosine. This theorem
generalizes to a theorem about maps of an arbitrary topological space X into a metric
space Y. We shall prove it in §21.

Exercises

1. Prove that for functions f : R — R, the ¢-§ definition of continuity implies the
open set definition,

2. Suppose that f : X — Y is continuous. If x is a limit point of the subset A of X,
is it necessarily true that f(x) is a limit point of f(A)?

3. Let X and X’ denote a single set in the two topologies 7~ and 7/, respectively.
Leti : X' — X be the identity function.
(a) Show that i is continuous < 7' is finer than 7.
(b) Show that i is a homeomorphism & 7/ = 7.

4. Givenxgp € X and yg € Y, show thatthemaps f : X - X xYandg:Y —
X x Y defined by

fx)y=xxy and gy =x0xy

are imbeddings.

5. Show that the subspace (a, b) of R is homeomorphic with (0, 1) and the subspace
[a, b} of R is homeomorphic with {0, 1].

6. Find a function f : R — R that is continuous at precisely one point.

7. (a) Suppose that f : R — R is “continuous from the right,” that is,
lim _f(x) = f(@),
x—da

for each a € R. Show that f is continuous when considered as a function
from R, to R.

(b) Can you conjecture what functions f : R — R are continuous when con-
sidered as maps from R to R;? As maps from R, to R,? We shall return to
this question in Chapter 3.

8. Let Y be an ordered set in the order topology. Let f, g : X — Y be continuous.
(a) Show thatthe set {x | f(x) < g(x)} is closed in X.
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(b) Leth : X — Y be the function
h(x) = min{f(x), g(x)}.

Show that k is continuous. {Hint: Use the pasting lemma.]
9. Let {A,]} be a collection of subsets of X; let X = Uy Aa- Let f : X = ¥,
suppose that f|A, is continuous for each c.
(a) Show that if the collection { A} is finite and each set A, is closed, then f is
continuous.
(b) Find an example where the collection {A} is countable and each Ay is
closed, but f is not continuous.
(c) An indexed family of sets {A4} is said to be locally finite if each point x
of X has a neighborhood that intersects Ag for only finitely many values of
«. Show that if the family {Aq} is locally finite and each A, is closed, then
f is continuous.
10. Let f : A — Band g : C — D be continuous functions. Let us define a map
f xg:AxC - B x Dby the equation

(f x g¥la x ¢) = f(a) x g(c).

Show that f x g is continuous.

11. Let F : X x ¥ — Z. We say that F is continuous in each variable separately if
foreach ypin Y, the map 4 : X — Z defined by h(x) = F(x X yo) is continuous,
and for each x¢ in X, the map k : ¥ — Z defined by k(y) = F(xo x y) is
continuous. Show that if F is continuous, then F is continuous in each variable

separately.
12. Let F : R x R — R be defined by the equation

xy/x2+yH) ifxxy#0x0.
Faxy= 0 ifxxy=0x0.
(a) Show that F is continuous in each variable separately.
(b) Compute the function g : R — R defined by g(x) = F(x x x).
(¢) Show that F is not continuous.
13. Let A C X; let f : A — Y be continuous; let ¥ be Hausdorff. Show that
if f may be extended to a continuous function g : A — Y, then g is uniquely
determined by f.

§19 The Product Topology

We now return, for the remainder of the chapter, to the consideration of various meth-
ods for imposing topologies on sets.
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Previously, we defined a topology on the product X x Y of two topologic al spaces,
In the present section, we generalize this definition to more general cartesian products.
So let us consider the cartesian products

Xix:--xX, and X xXpx---,

where each X; is a topological space. There are two possible ways to proceed. One
way is to take as basis all sets of the form Uy x ... x U, in the first case, and of the
form Uy x Uz x - - - in the second case, where U; is an open set of X; for each i. This
procedure does indeed define a topology on the cartesian product; we shall call it the
box topology.

Another way to proceed is to generalize the subbasis formulation of the definition,
given in §15. In this case, we take as a subbasis all sets of the form ni_l(U,-), where { is
any index and U; is an open set of X;. We shall call this topology the product topology.

How do these topologies differ? Consider the typical basis element B for the
second topology. It is a finite intersection of subbasis elements ni”l(U,-), say fori =
i1, ..., ix. Then a point X belongs to B if and only if m;(x) belongs to U; for i =
iy, ..., i; there is no restriction on ;(x) for other values of i.

It follows that these two topologies agree for the finite cartesian product and differ
for the infinite product. What is not clear is why we seem to prefer the second topology.
This is the question we shall explore in this section.

Before proceeding, however, we shall introduce a more general notion of cartesian
product. So far, we have defined the cartesian product of an indexed family of sets
only in the cases where the index set was the set {1, ..., n} or the set Z,. Now we
consider the case where the index set is completely arbitrary.

Definition. Let J be an index set. Given a set X, we define a J-tuple of elements
of X to be a function x : J — X. If « is an element of J, we often denote the value
of x at o by x, rather than x(«); we call it the ath coordinate of x. And we often
denote the function x itself by the symbol

(Xa)aes

which is as close as we can come to a “tuple notation” for an arbitrary index set J. We
denote the set of all J-tuples of elements of X by X7.

Definition. Let {Ay}acs be an indexed family of sets; let X = [ J,.; Aq. The
cartesian product of this indexed family, denoted by

I 4..

aelt

is defined to be the set of all J-tuples (xy)qcs Of elements of X such that x, € A, for
each o € J. That is, it is the set of all functions

x:J— UA(,
1)

such that x(«) € Ay foreach o € J.
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Occasionally we denote the product simply by 1 A4, and its general element
by (xg), if the index set is understood. o

If all the sets Aq are equal to one set X, then the cartesian product [Taes A.a is just
the set X7 of all J-tuples of elements of X. We sometimes use “tuple notation” for
the elements of X7, and sometimes we use functional notation, depending on which is

more convenient.

Definition. Let {Xg}oes be an indexed family of topological spaces. Let us take as
a basis for a topology on the product space

%

ael

the collection of all sets of the form

[10e

act

where Uy is open in X, for each @ € J. The topology generated by this basis is called
the box topology.

This collection satisfies the first condition for a basis because [ | X, is itself a basis
element; and it satisfies the second condition because the intersection of any two basis
elements is another basis element:

(T Ve n ([T Vo) = [[Wa 0 Va0

ael aeclt ael

Now we generalize the subbasis formulation of the definition. Let

Nﬂ:l_[Xanﬂ

act

be the function assigning to each element of the product space its Bth coordinate,
”ﬂ((xa)ael) = Xg;

it is called the projection mapping associated with the index 8.

Definition. Let 8z denote the collection
Sp = {m;'(Up) | Up openin Xp},

and let § denote the union of these collections,
s=J%s
Belt

The topology generated by the subbasis § is called the product topology. In this topol-
ogy [1ye; Xo is called a product space.
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To compare these topologies, we consider the basis B that § generates. The col-
lection B consists of all finite intersections of elements of S. If we intersect elements
belonging to the same one of the sets §g, we do not get anything new, becau se

75 (Up) Ny (V) = 5 (Up N V)

the intersection of two elements of Sg, or of finitely many such elements, is again an
element of §g. We get something new only when we intersect elements from different
sets Sg. The typical element of the basis B can thus be described as follows: Let 8y,
..., Bn be a finite set of distinct indices from the index set J, and let U, s; be an open
setin Xg, fori =1,..., n. Then

B =15 (Up) N, (Ug,) 0 -+ Ny (Up,)

is the typical element of B.
Now a point X = (xq) 18 in B if and only if its 8;th coordinate is in Ug,, its prth
coordinate is in Ug,, and so on. There is no restriction whatever on the ath coordinate

of x if o is not one of the indices By, . .., B,. As aresult, we can write B as the product
p=T]t,
aet
where U, denotes the entire space X, if ¢ # 81, ..., Bn.

All this is summarized in the following theorem:

Theorem 19.1 (Comparison of the box and product topologies). The box topol-
ogy on [| Xy has as basis all sets of the form [| Uy, where U, is open in X, for
each «. The product topology on [ | X, has as basis all sets of the form [ U,,, where
Uy is open in X, for each o and U, equals X, except for finitely many values of o.

Two things are immediately clear. First, for finite products [],., Xo the two
topologies are precisely the same. Second, the box topology is in general finer than
the product topology.

What is not so clear is why we prefer the product topology to the box topology. The
answer will appear as we continue our study of topology. We shall find that a number
of important theorems about finite products will also hold for arbitrary products if we
use the product topology, but not if we use the box topology. As a result, the product
topology is extremely important in mathematics. The box topology is not so important;
we shall use it primarily for constructing counterexamples. Therefore, we make the
following convention:

Whenever we consider the product [| X, we shall assume it is given the
product topology unless we specifically state otherwise.

Some of the theorems we proved for the product X x ¥ hold for the product [] Xo
no matter which topology we use. We list them here; most of the proofs are left to the
exercises.



116 Topological Spaces and Continuous Functions Ch.2

Theorem 19.2. Suppose the topology on each space Xq is given by a basis By. The
collection of all sets of the form
[1 B

aelt

where By € Bq for each a, will serve as a basis for the box topology on [_Ifxe 7 X
The collection of all sets of the same form, where By € By for finitely many
indices o and By = X, for all the remaining indices, will serve as a basis for the

product topology [Te s Xo-

EXAMPLE 1.  Consider euclidean n-space R". A basis for R consists of all open intervals
in R; hence a basis for the topology of R" consists of all products of the form

(a1, br) x (a2, by} x -+ X (an, by).
Since R” is a finite product, the box and product topologies agree. Whenever we con-

sider R", we will assume that it is given this topology, unless we specifically state other-
wise.

Theorem 19.3. Let A, be a subspace of X,, for each o € J. Then [1Aq is a
subspace of [| X, if both products are given the box topology, or if both products are
given the product topology.

Theorem 19.4. If each space X is a Hausdorff space, then 1 X« is a Hausdorff
space in both the box and product topologies.

Theorem 19.5. Let {X,) be an indexed family of spaces; let Ay C X, foreacha. If
[1 X« is given either the product or the box topology, then

Ma. -~

Proof Letx = (xy) bea point of [ A we show thatx € [{ Aq. Let U =[] Uy be
a basis element for either the box or product topology that contains X. Since xy € Aq,
we can choose a point yy € Uy N Ay for each . Then'y = (yy) belongs to both U
and [] Ae . Since U is arbitrary, it follows that x belongs to the closure of [ Aq.
Conversely, suppose X = (x) lies in the closure of [1Aq. in either topology. We
show that for any given index B, we have xg € Ag. Let Vg be an arbitrary open set
of X4 containing xg. Since 75 ! (Vg) is open in [ X in either topology, it c_ontains a
point ¥ = (ye) of [ Aq. Then yg belongs to Vg N Ag. It follows that xg € Ag. H

So far, no reason has appeared for preferring the product to the box topology. It is
when we try to generalize our previous theorem about continuity of maps into product
spaces that a difference first arises. Here is a theorem that does not hold if [] X is
given the box topology:
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Theorem 19.6. Let f : A — [[,.; X be given by the equation

f@) = (fal@)aes,

where fy : A — X, foreach . Let [| Xy have the product topology. Then the
function f is continuous if and only if each function fy is continuous.

Proof. Let g be the projection of the product onto its Bth factor. The function g
is continuous, for if Up is open in Xg, the set nﬂ’ 1(U,g) is a subbasis element for the
product topology on X,. Now suppose that f : A — [[X, is continuous. The

function fg equals the composite g o f; being the composite of two continuous
functions, it is continuous.

Conversely, suppose that each coordinate function fy is continuous. To prove
that f is continuous, it suffices to prove that the inverse image under f of each subbasis
element is open in A; we remarked on this fact when we defined continuous functions.
A typical subbasis element for the product topology on [ Xy is a set of the form
nEl(Uﬂ), where B is some index and Uy is open in X g. Now

oy W) = £ (W),
because fg = g o f. Since fg is continuous, this set is open in A, as desired. ]
Why does this theorem fail if we use the box topology? Probably the most con-
vincing thing to do is to look at an example.
EXAMPLE 2. Consider R”, the countably infinite product of R with itself. Recall that
R = [] Xa.
neZ,

where X,, = R for each n. Let us define a function f : R — R® by the equation
f@y=@¢.t1t,...%

the nth coordinate function of f is the function f,(¢) = t. Each of the coordinate functions
f+ : R — R is continuous; therefore, the function f is continuous if R“ is given the
product topology. But f is not continuous if R® is given the box topology. Consider, for
example, the basis element

11 11

B=(-L1)x (=335 %(~3.3

)X

for the box topology. We assert that f~!(B) is not open in R. If F~1(B) were open
in R, it would contain some interval (-8, 8) about the point 0. This would mean that
f((—38, 8)) C B, so that, applying 7, to both sides of the inclusion,

fa((=8,8)) = (=4,8) C (=1/n, 1/n)

for all n, a contradiction.
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Exercises

. Prove Theorem 19.2.

. Prove Theorem 19.3.

. Prove Theorem 19.4.

. Show that (X| X --- X Xp—1) x Xx is homeomorphic with Xj x - -+ x Xp.

. One of the implications stated in Theorem 19.6 holds for the box topology.

Which one?

6. Let x;, X2, ... be asequence of the points of the product space [1Xa. Show that

this sequence converges to the point X if and only if the sequence 7Tq (X1), e (X2),
. converges to my(x) for each . Is this fact true if one uses the box topology
instead of the product topology?

7. Let R be the subset of R® consisting of all sequences that are “eventually zero,”
that is, all sequences (x1, X2, ... ) such that x; # 0 for only finitely many values
of i. What is the closure of R® in R in the box and product topologies? Justify
your answer.

8. Given sequences (aj, a2, ...) and (b1, b2, ...) of real numbers with a; > 0 for

all i, define h : R® — R by the equation

R((x1, %2, ...)0) = (@x1 + b, aaxa + b2, )
Show that if R® is given the product topology, / is a homeomorphism of R* with
itself. What happens if R® is given the box topology?

9. Show that the choice axiom is equivalent to the statement that for any indexed
family {Ag)qes Of nonempty sets, with J # 0, the cartesian product

14

ael

[ T I

is not empty.
10. Let A be a set; let {X,}wes be an indexed family of spaces; and let { fy}acs be

an indexed family of functions fy : A = Xq. . '
(2) Show there is a unique coarsest topology 7~ on A relative to which each of

the functions f, is continuous.
(b) Let
Sp = (f5'(Up) | Up is open in Xg},
and let § = J Sg. Show that § is a subbasis for 7.
(c) Show thatamap g : ¥ — A is continuous relative to 5~ if and only if each

map fy o g is continuous.
(d) Let f: A — [[Xq be defined by the equation

fla) = (fa(@aes;

let Z denote the subspace f(A) of the product space [1X«. Show that the
image under f of each element of 7 is an open set of Z.

§20 The Metric Topology 119

§20 The Metric Topology

One of the most important and frequently used ways of imposing a topology on a set is
to define the topology in terms of a metric on the set. Topologies given in this way lie
at the heart of modern analysis, for example. In this section, we shall define the metric
topology and shall give a number of examples. In the next section, we shall consider
some of the properties that metric topologies satisfy.

Definition. A metric on a set X is a function
d:XxX— R

having the following properties:
(1) d(x,y) = 0forall x, y € X; equality holds if and only if x = y.
2y d{x,y)=d(y,x)forallx,y € X.
(3) (Triangle inequality) d(x, y) +d(y,z) > d(x,z),forallx, y, z € X.

Given a metric d on X, the number d(x, y) is often called the distance between x
and y in the metric d. Given € > 0, consider the set

Bi(x,e) ={yld(x,y) <€}

of all points y whose distance from x is less than €. It is called the e-ball centered
at x. Sometimes we omit the metric d from the notation and write this ball simply as
B(x, €), when no confusion will arise.

Definition. If d is a metric on the set X, then the collection of all €-balls B;(x, €), for

x € X and € > 0, is a basis for a topology on X, called the metric topology induced
by d.

The first condition for a basis is trivial, since x € B(x, ¢) for any ¢ > Q. Before
checking the second condition for a basis, we show that if y is a point of the basis
element B(x, €), then there is a basis element B(y, §) centered at y that is contained
in B(x, €). Define & to be the positive number € — d(x, y). Then B(y, §) C B(x, €),
for if z € B(y, 8), thend(y, z) < € — d(x, y), from which we conclude that

d(x,z) <d(x,y) +d(y,z) <e.

See Figure 20.1.

Now to check the second condition for a basis, let B| and B; be two basis elements
and let y € BN B;. We have just shown that we can choose positive numbers 8 and 2
so that B(y, 8;) C By and B(y, 82) C Bj. Letting § be the smaller of §; and d7, we
conclude that B(y, §) C B N B,.

Using what we have just proved, we can rephrase the definition of the metric topol-
ogy as follows:



120 Topological Spaces and Continuous Functions Ch. 2

Figure 20.1

A set U is open in the metric topology induced by d if and only if for each
y € U, there is a § > 0 such that Ba(y, 8y cU.

Clearly this condition implies that U is open. Conversely, if U is open, it contains
a basis element B = By (x, €) containing y, and B in turn contains a basis element
By(y, 8) centered at y.

EXAMPLE 1. Given a set X, define
dx,yy=1 ifx#y,
d(x,y)=0 ifx=y.
Tt is trivial to check that 4 is a metric. The topology it induces is the discrete topology; the
basis element B(x, 1), for example, consists of the point x alone.
EXAMPLE 2.  The standard metric on the real numbers R is defined by the equation
d(x,y) =x =yl

It is easy to check that d is a metric. The topology it induces is the same as the ordc.er
topology: Each basis element (a, b) for the order topology is a basis element for the metric
topology; indeed,

(a,b) = B(x,€),

where x = (a + b)/2 and € = (b — a)/2. And conversely, each e-ball B(x, €) equals an
open interval: the interval (x — €, ¥ + €).

Definition. If X is a topological space, X is said to be metrizable if there exists a
metric d on the set X that induces the topology of X. A metric space is a metrizable
space X together with a specific metric d that gives the topology of X.

Many of the spaces important for mathematics are metrizable, but some are not.
Metrizability is always a highly desirable attribute for a space to possess, for the exis-
tence of a metric gives one a valuable tool for proving theorems about the space.
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It is, therefore, a problem of fundamental importance in topology to find condi-
tions on a topological space that will guarantee it is metrizable. One of our goals in
Chapter 4 will be to find such conditions; they are expressed there in the famous the-
orem called Urysohn's metrization theorem. Further metrization theorems appear in
Chapter 6. In the present section we shall content ourselves with proving merely that
R” and R® are metrizable.

Although the metrizability problem is an important problem in topology, the study
of metric spaces as such does not properly belong to topology as much as it does
to analysis. Metrizability of a space depends only on the topology of the space in
question, but properties that involve a specific metric for X in general do not. For
instance, one can make the following definition in a metric space:

Definition. Let X be a metric space with metric d. A subset A of X is said to be
bounded if there is some number M such that
dlai,ay) =M

for every pair a, ap of points of A. If A is bounded and nonempty, the diameter of A
is defined to be the number

diam A = sup{d(a, a2) | a1, az € A}.

Boundedness of a set is not a topological property, for it depends on the particular
metric d that is used for X. For instance, if X is a metric space with metric d, then
there exists a metric d that gives the topology of X, relative to which every subset of X
is bounded. It is defined as follows:

Theorem 20.1. Let X be a metric space with metric d. Defined : X x X — R by
the equation

d(x, y) = min{d(x, y), 1}.
Then d is a metric that induces the same topology asd.

The metric d is called the standard bounded metric corresponding to d.

Proof Checking the first two conditions for a metric is trivial. Let us check the
triangle inequality:

dx,z) < d(x, y) + J(y, Z).

Now if either d(x, y) = 1 ord(y,z) > 1, then the right side of this inequality is at
least 1; since the left side is (by definition) at most 1, the inequality holds. It remains
to consider the case in which d(x, y) < 1 and d(y, z) < 1. In this case, we have

d(x,z) <d(x,y) +d(y,2) =d(x,y) +d(y, 2).

Since d (x,z) < d(x, z) by definition, the triangle inequality holds for d.
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Now we note that in any metric space, the collection of e-balls with ¢ < 1 forms
a basis for the metric topology , for every basis element containing x contains such an
e-ball centered at x. It follows that d and d induce the same topology on X, because

the collections of e-balls with € < 1 under these two metrics are the same collection.
[ ]

Now we consider some familiar spaces and show they are metrizable.

Definition. Givenx = (x1, ..., X,) in R", we define the norm of x by the equation
il = &+ -+ 1DV
and we define the euclidean metric d on R” by the equation
dx,y) = I =yl =[x =y + -+ G = y)"12
We define the square metric p by the equation
p(x,y) = max{jxi = yil. ..., ¥ — ynl}.

The proof that d is a metric requires some work; it is probably already familiar to
you, If not, a proof is outlined in the exercises. We shall seldom have occasion to use
this metric on R".

To show that p is a metric is easier. Only the triangle inequality is nontrivial. From
the triangle inequality for R it follows that for each positive integer ¢,

i —zi| < |xi—yil + 1y =zl
Then by definition of p,
Ixi —zi| £ (X, ¥) + (¥, 2).
As a result
p(x, z) = max{lx; — z} < p(X.¥) + o (¥, 2),

as desired.

On the real line R = R!, these two metrics coincide with the standard metric
for R. In the plane R?, the basis elements under d can be pictured as circular regions,
while the basis elements under p can be pictured as square regions.

We now show that each of these metrics induces the usual topology on R”. We
need the following lemma:

Lemma20.2. Letd andd’ be two metrics on the set X ; let 7 and 7' be the topologies
they induce, respectively. Then 7 is finer than T if and only if for each x in X and
each € > 0, there exists a § > 0 such that

Byi(x,8) C By(x, €).
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Proof. Suppose that 7 is finer than 7. Given the basis element By (x, €) for 7, there
is by Lemma 13.3 a basis element B’ for the topology 7' such that x € B’ C By(x, €).
Within B’ we can find a ball By (x, §) centered at x.

Conversely, suppose the §-¢ condition holds. Given a basis element B for 7 con-
taining x, we can find within B a ball B;(x, €) centered at x. By the given condition,
there is a § such that By (x, 8) C Bg(x, €). Then Lemma 13.3 applies to show 7/ is
finer than 7. ]

Theorem 20.3. The topologies on R" induced by the euclidean metric d and the
square metric p are the same as the product topology on R”".

Proof. Letx = (x1,...,xp)andy = (y1, ..., ¥s) be two points of R". It is simple
algebra to check that

p(X,y) < d(x,y) < V/np(x,y).
The first inequality shows that
Bg(x,€) C By(x, €)

for all x and ¢, since if d(X,y) < ¢, then p(Xx,y) < € also. Similarly, the second
inequality shows that

B,(X, €/+/n) C Ba(x, €)

for all x and €. It follows from the preceding lemma that the two metric topologies are
the same.

Now we show that the product topology is the same as that given by the metric p.
First, let

B = (a1, by) x -+ x (an, bn)

be a basis element for the product topology, and let x = (xi, ..., x,) be an element
of B. For each i, there is an ¢; such that

(xi — €, % +€) C(a;, bi);

choose € = min{eq, ..., €,}. Then B,(x,€) C B, as you can readily check. As a
result, the p-topology is finer than the product topology.

Conversely, let B, (x, €) be a basis element for the p-topology. Given the element
¥ € B,(X, €), we need to find a basis element B for the product topology such that

Y € B C By(x,¢€).
But this is trivial, for
By(x,€) = (x; ~€,x1 + €) X -+ X Xy — €, Xy + €)

is itself a basis element for the product topology. [ ]
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Now we consider the infinite cartesian product R®. It is natural to try to generalize
the metrics d and p to this space. For instance, one can attempt to define a metric d
on R? by the equation '

o 1/2
d(x,y) = [}:(xi - y.-)z} :
i=1

But this equation does not always make sense, for the series in question need not
converge. (This equation does define a metric on a certain important subset of R®,
however; see the exercises.)

Similarly, one can attempt to generalize the square metric p to R“ by defining

o{X, y) = sup{|x, — ynl}.

Again, this formula does not always make sense. If however we replace the usual
metric d(x, y) = |x — y| on R by its bounded counterpart d(x, y) = min{|x — y|, 1},
then this definition does make sense; it gives a metric on R® called the uniform metric.

The uniform metric can be defined more generally on the cartesian product R’ for
arbitrary J, as follows:

Definition. Given an index set J, and given points X = (Xo)aes 20d Y = (Ya)aes
of R, let us define a metric 5 on R’ by the equation

H(X,y) = sup{d(xq, ya) | @ € J},

where d is the standard bounded metric on R. It is easy to check that p is indeed a
metric; it is called the uniform metric on R’, and the topology it induces is called the
uniform topology.

The relation between this topology and the product and box topologies is the fol-
lowing:

Theorem 20.4. The uniform topology on RY is finer than the product topology and
coarser than the box topology; these three topologies are all different if J is infinite.

Proof. Suppose that we are given a point X = (¥g)aes and a product topology basis
element [| Uy about x. Let o, ..., an be the indices for which U, # R. Then for
each i, choose ¢; > 0 so that the ¢;-ball centered at xg, in the d metric is contained
in Ug,; this we can do because Uy, is open in R. Let ¢ = minley, ..., €p}; then the
¢-ball centered at X in the 5 metric is contained in [ Uy. For if z is a point of R’ such
that 5(X, z) < €, then J(xa, 7q) < € forall @, so that z € []Ug. It follows that the
uniform topology is finer than the product topology.

On the other hand, let B be the ¢-ball centered at X in the ¢ metric. Then the box
neighborhood

U= n(xa - %5, Xg + %6)
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of x is contained in B. Forify € U, then d(xe, Vo) < %e for all ¢, so that g(x,y) <
le.

Showing these three topologies are different if J is infinite is a task we leave to
the exercises. [ |

In the case where J is infinite, we still have not determined whether R/ is metriz-
able in either the box or the product topology. It turns out that the only one of these
cases where R is metrizable is the case where J is countable and R’ has the product
topology. As we shall see.

Theorem 20.5. Let d{a, b) = min{|a — b|, 1} be the standard bounded metric on R.
Ifx and y are two points of R“, define

au. v;
D(x,y) = sup{ﬁ'.’i)} .
i
Then D is a metric that induces the product topology on R®.

Proof The properties of a metric are satisfied trivially except for the triangle inequal-
ity, which is proved by noting that for all i,

d(xi., %) < d(xi" i) + d(yii, Zi) < D(x.y) + D.2).

! !

so that
d(xi, z;)
upy < D(x,y) + D(y, ).

The fact that D gives the product topology requires a little more work. First, let U
be open in the metric topology and let x € U; we'find an open set V in the product
topology such that x € V C U. Choose an ¢-ball Bp(x, ¢) lying in U. Then choose N
large enough that 1/N < e. Finally, let V be the basis element for the product topology

V=@ —€x1+€x--xQay—€xy+€) xRxRx....

We assert that V C Bp(X, €): Given any y in R?,

d(x;, vi 1
(ll y,)SN fOI‘lzN
Therefore,
Jix _
D(x,y)smax{ (Ml’yl)"“’d(xi\;\;ylv)‘%}'

If y is in V, this expression is less than ¢, so that V C Bp(x, €), as desired.
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Conversely, consider a basis element

U=HUi

i€Zy

for the product topology, where U;isopeninR fori = oy, ..., and U; = R for all
other indices i. Given x € U, we find an open set V of the metric topology such that
x € V C U. Choose an interval (x; — €, xi + €) in R centered about x; and lying
inU, fori =ay,...,con; choose each¢; < 1. Then define

e =min{e;/i | i =i, ..., )
We assert that
x € Bp(x,e) C U.

Let y be a point of Bp(x, €). Then for all 7,

a’(x,‘., i) <Dy <e.
i
Now if i = «), ..., an, then € < ¢ /i, so that J(x,-, yi) < € < 1; it follows that
lxi — yil < ¢;. Therefore, y € [ U;, as desired. u

Exercises
1. (a) InR", define
d'(x,y) = lxg =yl 4+ 1% = yul.

Show that ¢’ is a metric that induces the usual topology of R". Sketch the
basis elements under d’ when n = 2.
(b) More generally, given p > 1, define

n I/p

W&ﬂ=[2}n—mﬂ
i=1
for x, y € R". Assume that d’ is a metric. Show that it induces the usual
topology on R".

2. Show that R x R in the dictionary order topology is metrizable.

3. Let X be a metric space with meric d.
(a) Show thatd : X x X — Ris continuous.
(b) Let X’ denote a space having the same underlying set as X. Show that if
d: X' x X' — R is continuous, then the topology of X ’ is finer than the

topology of X.
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One can summarize the result of this exercise as follows: If X has a metric d,
then the topology induced by d is the coarsest topology relative to which the
function d is continuous.

. Consider the product, uniform, and box topologies on R®.

(a) In which topologies are the following functions from R to R® continuous?
f)=1(,2¢3,...),
gy=1(,t,t,...),
h(ty = (e, 51, 4e,..0).

(b) In which topologies do the following sequences converge?
w=(111..), x=(1LL1...)
w=(0,222..) %X=(01
w3 =1(0,0,3,3...), x3=(0,0,

1
A,

B

L
2
L
3

[OSTR
~—

y1=(0,0,0,0,...), 1z =(,100,..),
2=, 400, 2=(300..),

vi=G 4500, 5=3G100..,

. Let R be the subset of R® consisting of all sequences that are eventually zero.

What is the closure of R in R® in the uniform topology? Justify your answer.

. Let 5 be the uniform metric on R. Given x = (x|, x2,...) € R® and given

0<e<l,let
U, e) =] —€,x1+€) X - X (Xn—€Xp+€) X -

(a) Show that U (x, €) is not equal to the ¢-ball B;(x, €).
(b) Show that U (x, €) is not even open in the uniform topology.
(c) Show that

Bs(x,€) = | JUx 8.

d<e

. Consider the map h : R* — R® defined in Exercise 8 of §19; give R the uni-

form topology. Under what conditions on the numbers a; and b; is & continuous?
a homeomorphism?

. Let X be the subset of R® consisting of all sequences x such that 3 x,.2 converges.

Then the formula

i=1

00 12
M&D=[Z}n—ﬁf}
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defines a metric on X. (See Exercise 10.) On X we have the three topologies it
inherits from the box, uniform, and product topologies on R, We have also the
topology given by the metric d, which we call the £2-topology. (Read “little ell
two.”)

(a) Show that on X, we have the inclusions

box topology D £2-topology D uniform topology.

(b) The set R of all sequences that are eventually zero is contained in X. Show
that the four topologies that R* inherits as a subspace of X are all distinct.
(c) The set

H= T[]0 1/n

nely

is contained in X: it is called the Hilbert cube. Compare the four topologies
that H inherits as a subspace of X.

9. Show that the euclidean metric d on R" is a metric, as follows: If x, y € R" and
¢ € R, define

x+y=(xl+)’l1-~~:xn+)’n)»
cX = (cX, ..., CXxn),

X-y=x1y1+ -+ Xnyn

(a) Show thatx-(y+12z) =(X-y)+ (X-2).

(b) Show that |x-y| < |Ix|l|lyll. [Hint: Ifx,y # 0,leta = 1/ix|l and b = 1/llyll,
and use the fact that |lax & by|| > 0.}

(c) Show that fix +y| < x|l + llyll. {Hint: Compute xX+y - -(x+y) and
apply (b).}]

(d) Verify that d is a metric.

10. Let X denote the subset of R® consisting of all sequences (x1, X2, . ..) such that
inz converges. (You may assume the standard facts about infinite series. In
case they are not familiar to you, we shall give them in Exercise 11 of the next
section.)

(a) Show thatifx,y € X, then 3" {x; yi| converges. [Hint: Use (b) of Exercise 9
to show that the partial sums are bounded.]

(b) Letc € R. Show thatifx,y € X, then so are x +y and cxX.

(c) Show that

o 12
dx,y) = [Z(xi - )’i)z]
=

is a well-defined metric on X.
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#11. Show that if 4 is a metric for X, then
d'(x, y) = d(x, /(1 +d(x, )

is a bounded metric that gives the topology of X. [Hint: If f(x) = x/(1+ x) for
x > 0, use the mean-value theorem to show that f(a +b) — f b)) < fa)]

§21 The Metric Topology (continued)

In this section, we discuss the relation of the metric topology to the concepts we have
previously introduced.

Subspaces of metric spaces behave the way one would wish them to; if Ais a
subspace of the topological space X and d is a metric for X, then the restriction of d
to A x A is a metric for the topology of A. This we leave to you to check.

About order topologies there is nothing to be said; some are metrizable (for in-
stance, Z, and R), and others are not, as we shall see.

The Hausdorff axiom is satisfied by every metric topology. If x and y are distinct
points of the metric space (X, d), welet ¢ = %d (x, y); then the triangle inequality
implies that By(x, €) and By(y, €) are disjoint.

The product topology we have already considered in special cases; we have proved
that the products R” and R® are metrizable. Itis true in general that countable products
of metrizable spaces are metrizable; the proof follows a pattern similar to the proof
for R, so we leave it to the exercises.

About continuous functions there is a good deal to be said. Consideration of this
topic will occupy the remainder of the section.

When we study continuous functions on metric spaces, we are about as close to
the study of calculus and analysis as we shall come in this book. There are two things
we want to do at this point.

First, we want to show that the familiar “¢-8 definition” of continuity carries over
to general metric spaces, and so does the “convergent sequence definition” of continu-
ity.

Second, we want to consider two additional methods for constructing continuous
functions, besides those discussed in §18. One is the process of taking sumns, differ-
ences, products, and quotients of continuous real-valued functions. The other is the
process of taking limits of uniformly convergent sequences of continuous functions.

Theorem21.1. Let f: X — Y;let X andY be metrizable with metrics dx anddy,
respectively. Then continuity of f is equivalent to the requirement that given x € X
and given ¢ > 0, there exists § > 0 such that

dx(x,y) <8 = dy(f(x), f(y)) < €.

Proof  Suppose that f is continuous. Given x and €, consider the set

FUBU ), ),
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which is open in X and contains the point x. It contains some §-ball B(x, 8) centered
at x. If y is in this 8-ball, then f(y) is in the e-ball centered at f(x), as desired.
Conversely, suppose that the ¢-3 condition is satisfied. Let V be open in ¥; we
show that f~1(V) is open in X. Let x be a point of the set f~'(V). Since f(x) €
V, there is an e-ball B(f(x), ¢) centered at f(x) and contained in V. By the -
§ condition, there is a 8-ball B(x, 8) centered at x such that f(B(x, §)) C B(f(x), €).
Then B(x, 8) is a neighborhood of x contained in £ U(V), so that f"(V) is open, as
desired. u

Now we turn to the convergent sequence definition of continuity. We begin by
considering the relation between convergent sequences and closures of sets. It is cer-
tainly believable, from one’s experience in analysis, that if x lies in the closure of a
subset A of the space X, then there should exist a sequence of points of A converging
to x. This is not true in general, but it is true for metrizable spaces.

Lemma 21.2 (The sequence lemma). Let X be a topological space; let A C X. If
there is a sequence of points of A converging to x, then x € A; the converse holds if X
is metrizable.

Proof. Suppose that x, — x, where x, € A. Then every neighborhood U of x
contains a point of A, so x € A by Theorem 17.5. Conversely, suppose that X is
metrizable and x € A. Let d be a metric for the topology of X. For each positive
integer n, take the neighborhood By4(x, 1/n) of radius 1/n of x, and choose x, to be
a point of its intersection with A. We assert that the sequence x, converges to x: Any
open set U containing x contains an ¢-ball By(x, €) centered at x; if we choose N so
that 1/N < ¢, then U contains x; foralli > N. n

Theorem 21.3. Let f : X — Y. If the function f is continuous, then for every con-
vergent sequence x, — x in X, the sequence f (x,) converges to f(x). The converse
holds if X is metrizable.

Proof. Assume that f is continuous. Given x, — x, we wish to show that f(x,) —
f(x). Let V be a neighborhood of f(x). Then F~1(V) is a neighborhood of x, and so
there is an N such that x, € f~1(V) forn > N. Then f(x,) € V forn > N.

To prove the converse, assume that the convergent sequence condition is satisfied.
Let A be a subset of X; we show that f(A) C f(A). If x € A, then there is a
sequence x, of points of A converging to x (by the preceding lemma). By assumption,
the sequence f(x,) converges to f(x). Since f(x,) € f(A), the preceding lemma
implies that f(x) € f(A). (Note that metrizability of Y is not needed.) Hence f (A) C
f(A), as desired. ]

Incidentally, in proving Lemma 21.2 and Theorem 21.3 we did not use the full strength
of the hypothesis that the space X is metrizable. All we really needed was the countabie
collection By (x, 1/n) of balls about x. This fact leads us to make a new definition.

A space X is said t0 have a countable basis at the point x if there is a countable
collection {Uy tuez, Of neighborhoods of x such that any neighborhood U of x contains ar
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least one of the sets U,. A space X that has a countable basis at each of its points is said to
satisfy the first countability axiom.

If X has a countable basis {U,} at x, then the proof of Lemma 21.2 goes through; one
simply replaces the ball By4(x, 1/n) throughout by the set

B, =U NUN---NU,.

The proof of Theorem 21.3 goes through unchanged.

A metrizable space always satisfies the first countability axiom, but the converse is not
true, as we shall see. Like the Hausdorff axiom, the first countability axiom is a requirement
that we sometimes impose on a topological space in order to prove stronger theorems about
the space. We shall study it in more detail in Chapter 4.

Now we consider additional methods for constructing continuous functions. We
need the following lemma:

Lemma 21.4.  The addition, subtraction, and multiplication operations are continu-
ous functions from R x R into R; and the quotient operation is a continuous function
fromR x (R — {0}) intoR.

You have probably seen this lemma proved before; itis a standard “e-8 argument.”
If not, a proof is outlined in Exercise 12 below; you should have no trouble filling in
the details.

Theorem 21.5. If X is a topological space, and if f,g : X — R are continuous
functions, then f + g, f — g, and f - g are continuous. If g(x) # 0 forall x, then f/g
is continuous.

Proof Themaph : X — R x R defined by
h(x) = f(x) x g(x)

is continuous, by Theorem 18.4, The function f + g equals the composite of h and
the addition operation

+:RxR—->R;
therefore f + g is continuous. Similar arguments apply to f — g, f - &, and f/g. W

Finally, we come to the notion of uniform convergence.

Definition. Let f, : X — Y be a sequence of functions from the set X to the metric
space Y. Let d be the metric for Y. We say that the sequence (fn) converges uniformly
to the function f : X — Y if given € > 0, there exists an integer N such that

d(falx), f(x)) <€
foralln > N and all x in X.

Uniformity of convergence depends not only on the topology of Y but also on its
metric. We have the following theorem about uniformly convergent sequences:
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Theorem 21.6 (Uniform limit theorem). Let f, : X — Y be a sequence of contin-
uous functions from the topological space X to the metric space Y. If () converges
uniformly to f, then f is continuous.

Proof. Let V be open in Y; let xq be a point of FY(V). We wish to find a neighbor-
hood U of xg such that f(U) C V.

Let yp = f(xo). First choose € so that the e-ball B(yy, €) is contained in V. Then,
using uniform convergence, choose N so that foralln > N andall x € X,

d(falx), (X)) < €/3.

Finally, using continuity of fy, choose a neighborhood U of xg such that fy carries U
into the /3 ball in ¥ centered at f (xo).

We claim that f carries U into B(yp, €) and hence into V, as desired. For this
purpose, note that if x € U, then

d(f(x), fn(x)) < €/3  (by choice of N),
d(fy(x), fn(x0)) <€/3  (by choice of U),
d(fn(xo), f(x0)) < €/3  (by choice of N).

Adding and using the triangle inequality, we see that d{( fx), f(x0)) < €, as
desired. u

Let us remark that the notion of uniform convergence is related to the definition of
the uniform metric, which we gave in the preceding section. Consider, for example,
the space RX of all functions f : X — R, in the uniform metric 5. It is not difficult to
see that a sequence of functions f, : X — R converges uniformly to f if and only if
the sequence ( f,) converges to f when they are considered as elements of the metric
space (RX, 5). We leave the proof to the exercises.

We conclude the section with some examples of spaces that are not metrizable.

EXAMPLE 1. R in the box topology is not metrizable.

We shall show that the sequence lemma does not hold for R”. Let A be the subset of
R® consisting of those points ali of whose coordinates are positive:

A={(x1,x2,...) | x; >Oforalii € Z,}.

Let 0 be the “origin” in R, that is, the point (0,0, ...) each of whose coordinates is zero.
In the box topology, 0 belongs to A; for if

B = (a1, b1) x (ag, by) x - -
is any basis element containing 0, then B intersects A. For instance, the point
(3b1, 3b2..)

belongs to B N A.
But we assert that there is no sequence of points of A converging to 0. For let (a,) be
a sequence of points of A, where

Ay = (Xln, X205 - - Xins -+ )-
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Every coordinate x;, is positive, so we can construct a basis element B’ for the box topol-
ogy on R by setting

B’ = (—x11,x11) X (—X22,X22) X -+ .

Then B’ contains the origin 0, but it contains no member of the sequence (a,); the
point a, cannot belong to B’ because its nth coordinate x,,, does not belong to the interval
(=Xnn» Xnn). Hence the sequence (a,) cannot converge to 0 in the box topology.

EXAMPLE 2.  An uncountable product of R with itself is not metrizable.

Let J be an uncountable index set; we show that R/ does not satisfy the sequence
lemma (in the product topology).

Let A be the subset of R consisting of all points (x,) Such that x, = 1 for all but
finitely many values of a. Let 0 be the “origin” in R/, the point each of whose coordinates
is 0.

We assert that 0 belongs to the closure of A. Let [| Uy be a basis element containing 0.
Then U, # R for only finitely many values of a, say fora = af, ..., a. Let (xy) be the
point of A defined by letting x, = Ofora =ay, ..., a, and x4 = 1 for all other values of
o; then (xo) € AN [ Uy, as desired.

But there is no sequence of points of A converging to 0. For let a, be a sequence of
points of A. Given n, let J, denote the subset of J consisting of those indices a for which
the ath coordinate of a, is different from 1. The union of all the sets J, is a countable
union of finite sets and therefore countable. Because J itself is uncountable, there is an
index in J, say B, that does not lie in any of the sets J,. This means that for each of the
points ay, its Ath coordinate equals 1.

Now let Ug be the open interval (—1, 1) in R, and let U be the open set nﬂ_I(Uﬂ)
in R”. The set U is a neighborhood of 0 that contains none of the points a,; therefore, the
sequence a, cannot converge to 0.

Exercises

1. Let A C X. If d is a metric for the topology of X, show that d{A x A is a metric
for the subspace topology on A.

2. Let X and Y be metric spaces with metrics dx and dy, respectively. Let f :
X — Y have the property that for every pair of points x, xz of X,

dy (f(x1), f(x2)) = dx(x1, x2).

Show that f is an imbedding. It is called an isometric imbedding of XinY.

3. Let X, be a metric space with metric dy, forn € Z.,.
(a) Show that

o(x, y) = max{d,(x1, 1), .. s da(Xn, yn)}

is a metric for the product space X| x - -+ X Xj.
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(b) Let d; = min{d;, 1}. Show that
D(x, y) = sup{d;(xi, i)/ i}

is a metric for the product space [] X;.

. Show that R; and the ordered square satisfy the first countability axiom. (This

result does not, of course, imply that they are metrizable.)

. Theorem. Letx, — x and y, — Yy in the space R. Then

Xn+Yn > X+Y,
Xp = Yn —> X — Y,
Xn¥Yn —> XYy,

and provided that each y, # 0 andy # 0,

Xn/Y¥n = X/

{Hint: Apply Lemma 21.4; recall from the exercises of §19 that if x, — x and
Yo = ¥, thenx, X y; = x x y.}

. Define f, : [0,1] — R by the equation fr(x) = x". Show that the sequence

(fn(x)) converges for each x € {0, 1], but that the sequence ( f,) does not con-
verge uniformly.

. Let X be a set, and let f; : X — R be a sequence of functions. Let p be

the uniform metric on the space RX. Show that the sequence ( f;,) converges
uniformly to the function f : X — R if and only if the sequence ( f,) converges
to f as elements of the metric space (RX, 5).

. Let X be a topological space and let Y be a metric space. Let f; : X — Y

be a sequence of continuous functions. Let x, be a sequence of points of X
converging to x. Show that if the sequence ( f,,) converges uniformly to f, then
(fu(xn)) converges to f(x).

. Let f, : R — R be the function

1
fn(X) = ————‘n3[x _ (1/n)]2 " T

See Figure 21.1. Let f : R — R be the zero function.

(a) Show that f,(x) - f(x) foreachx € R.

(b) Show that f,; does not converge uniformly to f. (This shows that the con-
verse of Theorem 21.6 does not hold; the limit function f may be continuous
even though the convergence is not uniform.)

Using the closed set formulation of continuity (Theorem 18.1), show that the
following are closed subsets of R?:

A={xxy|xy=1},
S1={xxy|x2+y2=1},
BZ={xxy|x>+y* <1}
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3=

Figure 21.1

The set B2 is called the (closed) unit ball in R2.

11. Prove the following standard facts about infinite series:

(a) Show that if (s,) is a bounded sequence of real numbers and s, < s,y for
each n, then (s,) converges.
(b) Let (a,) be a sequence of real numbers; define

n
Sp = E aj.
i=l

If s, — s, we say that the infinite series

o<
2
izl

converges to s also. Show that if ) a; converges to s and Y b; converges
to ¢, then Z(ca,- + b;) converges to cs + ¢.

(c) Prove the comparison test for infinite series: If |a;| < b; for each i, and if
the series Y b; converges, then the series Y a; converges. [Hint: Show that
the series Y_ |a;] and Y ¢; converge, where ¢; = |a;| + a;.]

(d) Given a sequence of functions f : X — R, let

sn(x) =y filx).
i=1

Prove the Weierstrass M-test for uniform convergence: If| fi(x)| < M; for
all x € X and all i, and if the series 3 M; converges, then the sequence (s,)
converges uniformly to a function s. [Hint: Letr, = Z,‘-’iu +1 Mi. Show
that if k > n, then |sg(x) — 5, (x)| < ry; conclude that |s(x) — sp(x)| < rn.}

12. Prove continuity of the algebraic operations on R, as follows: Use the metric

d(a, b) = |a — b| on R and the metric on R? given by the equation

p((x,y), (xo, y0)) = max{|x — xof, |y — yol}.
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(a) Show that addition is continuous. [Hint: Given €, let § = ¢/2 and note that
d(x +y,x0+ y) < |x —xol + |y — yol.]

(b) Show that multiplication is continuous. [Hint: Given (xp, yoyand 0 < € <
1, let

38 =€/(lxol + lyol + 1)
and note that
d(xy, xoy0) < Ixolly — yol + |yollx — xol 4 |x — xolly — yol.}

(c) Show that the operation of taking reciprocals is a continuous map from
R — {0} to R. [Hint: Show the inverse image of the interval (a, b) is open.
Consider five cases, according as a and b are positive, negative, or zero.}

(d) Show that the subtraction and quotient operations are continuous.

*§22 The Quotient Topology®

Unlike the topologies we have already considered in this chapter, the quotient topology
is not a natural generalization of something you have already studied in analysis. Nev-
ertheless, it is easy enough to motivate. One motivation comes from geometry, where
one often has occasion to use “cut-and-paste” techniques to construct such geometric
objects as surfaces. The forus (surface of a doughnut), for example, can be constructed
by taking a rectangle and “pasting” its edges together appropriately, as in Figure 22.1.
And the sphere (surface of a ball) can be constructed by taking a disc and collapsing
its entire boundary to a single point; see Figure 22.2. Formalizing these constructions
involves the concept of quotient topology.

Figure 22.1

TThis section will be used throughout Part 11 of the book. It also is referred to in a number of
exercises of Part 1.
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Figure 22.2

Definition. Let X and Y be topological spaces; let p : X — Y be a surjective map.
The map p is said to be a quotient map provided a subset U of ¥ is open in Y if and
only if p~!(U) is openin X.

This condition is stronger than continuity; some mathematicians call it “strong
continuity.” An equivalent condition is to require that a subset A of Y be closed in Y
if and only if p~'(A) is closed in X. Equivalence of the two conditions follows from
equation

Y-8 =x-fYB.

Another way of describing a quotient map is as follows: We say that a subset C
of X is saturated (with respect to the surjective map p : X — Y)if C contains every
set p~!({y}) that it intersects. Thus C is saturated if it equals the complete inverse
image of a subset of Y. To say that p is a quotient map is equivalent to saying that p is
continuous and p maps saturated open sets of X to open sets of ¥ (or saturated closed
sets of X to closed sets of Y).

Two special kinds of quotient maps are the open maps and the closed maps. Recall
that amap f : X — Y is said to be an open map if for each open set U of X, the
set f(U)is openin Y. It is said to be a closed map if for each closed set A of X, the
set f(A) is closed in Y. It follows immediately from the definition thatif p: X — Y
is a surjective continuous map that is either open or closed, then p is a quotient map.
There are quotient maps that are neither open nor closed. (See Exercise 3.)

EXAMPLE 1. Let X be the subspace [0, 1]U[2, 3] of R, and let ¥ be the subspace [0, 2}
of R. The map p : X — Y defined by

X for x € [0, 1],
pix) =
x—1 forx €(2,3}
is readily seen to be surjective, continuous, and closed. Therefore it is a quotient map. It is
not, however, an open map; the image of the open set [0, 1} of X is notopenin Y.

Note that if A is the subspace [0, 1) U [2, 3] of X, then the map g : A — Y obtained
by restricting p is continuous and surjective, but it is not a quotient map. For the set {2, 3}
is open in A and is saturated with respect to g, but its image is not openin Y.
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EXAMPLE 2. Letm R x R — R be projection onto the first coordinate; then my is
continuous and surjective. Furthermore, 7 is an open map. For if U x V' is a nonempty
basis element for R x R, then 7r; (U x V) = U is open in R; it follows that 7| carries open
sets of R x R to open sets of R. However, 7| is not a closed map. The subset

C={xxylxy=1}

of R x R is closed, but 711 (C) = R — {0}, which is not closed in R.
Note that if A is the subspace of R x R that is the union of C and the origin {0}, then
the map ¢ : A — R obtained by restricting 1 is continuous and surjective, but it is not a
quotient map. For the one-point set {0} is open in A and is saturated with respect to g, but
its image is not open in R.
Now we show how the notion of quotient map can be used to construct a topology
on a set.

Definition. If X is a space and A is a ser and if p : X — A is a surjective map, then
there exists exactly one topology 7~ on A relative to which p is a quotient map; it is
called the quotient topology induced by p.

The topology T is of course defined by letting it consist of those subsets U of A
such that p‘l(U ) is open in X. It is easy to check that 7" is a topology. The sets &
and A are open because p‘l(@) = @ and p‘l(A) = X. The other two conditions
follow from the equations

P U Un = r' W,

ael ' =¥)
n n
- -1
p iUy =p "W
i=1 i=1
EXAMPLE 3.  Let p be the map of the real line R onto the three-point set A = {a, b, c}
defined by

a ifx >0,
pxy=14{b ifx <0,
¢ ifx=0.

You can check that the quotient topology on A induced by p is the one indicated in Fig-
ure 22.3.

QO L

Figure 22.3

There is a special situation in which the quotient topology occurs particularly fre-
quently. It is the following:
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Definition. Let X be a topological space, and let X* be a partition of X into disjoint
subsets whose union is X. Let p : X — X* be the surjective map that carries each
point of X to the element of X* containing it. In the quotient topology induced by p,
the space X* is called a quotient space of X.

Given X*, there is an equivalence relation on X of which the elements of X* are
the equivalence classes. One can think of X* as having been obtained by “ide ntifying”
each pair of equivalent points. For this reason, the quotient space X* is often called an
identification space, or a decomposition space, of the space X.

We can describe the topology of X* in another way. A subset U of X* is a col-
lection of equivalence classes, and the set p~! (U) is just the union of the equivalence
classes belonging to U. Thus the typical open set of X* is a collection of equivalence
classes whose union is an open set of X.

EXAMPLE 4, Let X be the closed unit ball
rxylxi+yt <1y

in R2, and let X* be the partition of X consisting of all the one-point sets {x x y} for
which x2 + y? < 1, along with the set S! = {x x y} | x2+ y? = 1}. Typical saturated
open sets in X are pictured by the shaded regions in Figure 22.4. One can show that X* is
homeomorphic with the subspace of R® called the unit 2-sphere, defined by

2= ((y.2) | +yi+E =1k

/P(U)
%Y,
P
——
p(v)
Figure 22.4

EXAMPLES. Let X be the rectangle [0, 1] [0, 1]. Define a partition X* of X as foliows:
1t consists of all the one-point sets {x x y} where 0 < x < 1 and 0 < y < 1, the following
types of two-point sets:

{x x0,x x 1} where0 <x <1,
{Oxy Ixy} where0<y<l,

and the four-point set
{0x0,0x1,1x0,1x1}.

Typical saturated open sets in X are pictured by the shaded regions in Figure 22.5; each is
an open Set of X that equals a union of elements of X*.
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The image of each of these sets under p is an open set of X*, as indicated in Fig-
ure 22.6. This description of X* is just the mathematicai way of saying what we expressed
in pictures when we pasted the edges of a rectangle together to form a torus.

AR [
N A LA ,

0x0 X% 0

Figure 22.6

Now we explore the relationship between the notions of quotient map and quo-
tient space and the concepts introduced previously. It is interesting to note that this
relationship is not as simple as one might wish.

We have already noted that subspaces do not behave well; if p : X — Yisa
quotient map and A is a subspace of X, then the map ¢ : A — p(A) obtained by
restricting p need not be a quotient map. One has, however, the following theorem:

Theorem 22.1. Let p : X — Y be a quotient map; let A be a subspace of X that is

saturated with respect to p; letq : A — p(A) be the map obtained by restricting p.
(1) If A is either open or closed in X, then q is a quotient map.

*(2) If p is either an open map or a closed map, then q is a quotient map.

Proof. Step 1. We venify first the following two equations:

g7 'vy=p'(V) ifV C p(A);
p(UNA)=pU)NpA) ifUCX.
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To check the first equation, we note that since V C p(A) and 4 is satrated, p~1 (V)
is contained in A. It follows that both p~!(V) and ¢! (V) equal all points of A that
are mapped by p into V. To check the second equation, we note that for any two
subsets U and A of X, we have the inclusion

p(UNA) CpU)np(A).

To prove the reverse inclusion, suppose y = p(u) = p(a), foru € U anda ¢ A.
Since A is saturated, A contains the set p~!(p(a)), so that in particular A contains u.
Then y = p(u), where u € U N A.

Step 2. Now suppose A is open or p is open. Given the subset V of p(A), we
assume that ¢ ~' (V) is open in A and show that V is open in p(A).

Suppose first that A is open. Since ¢~!(V) is open in A and A is open in X, the
set g~ (V) is openin X. Since ¢ ~' (V) = p~1(V), the latter set is open in X, so that
V is open in Y because p is a quotient map. In particular, V is open in p(A).

Now suppose p is open. Since ¢~1(V) = p~!(V) and ¢~'(V) is open in A, we
have p~1(V) = U N A for some set U open in X. Now p(p‘l(V)) = V because p is
surjective; then

V=p(p (V) = p(UNA) = p(U) N p(A).

The set p(U) is open in Y because p is an open map; hence V is open in p(A).

Step 3. The proof when A or p is closed is obtained by replacing the word “open”
by the word “closed” throughout Step 2. u

Now we consider other concepts introduced previously. Composites of maps be-
have nicely; it is easy to check that the composite of two quotient maps is a quotient
map; this fact follows from the equation

p g WU =(gop N U).

On the other hand, products of maps do not behave well; the cartesian product of
two quotient maps need not be a quotient map. See Example 7 following. One needs
further conditions on either the maps or the spaces in order for this statement to be
true. One such, a condition on the spaces, is called local compactness; we shall study
it later. Another, a condition on the maps, is the condition that both the maps p and ¢
be open maps. In that case, it is easy to see that p x ¢ is also an open map, so itis a
quotient map.

Finally, the Hausdorff condition does not behave well; even if X is Hausdorff,
there is no reason that the quotient space X* needs to be Hausdorff. There is a simple
condition for X* to satisfy the T) axiom; one simply requires that each element of the
partition X* be a closed subset of X. Conditions that will ensure X* is Hausdorff are
harder to find. This is one of the more delicate questions concerning quotient spaces;
we shall return to it several times later in the book.

Perhaps the most important result in the study of quotient spaces has to do with the
problem of constructing continuous functions on a quotient space. We consider that
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problem now. When we studied product spaces, we had a criterion for determiniqg
whetheramap f : Z — [] X, into a product space was continuous. Its counterpart in
the theory of quotient spaces is a criterion for determining whenamap f: X* = Z
out of a quotient space is continuous. One has the following theorem:

Theorem 22.2. Let p : X — Y be a quotient map. Let Z be a space and let
g : X — Z be a map that is constant on each set p~'({y}), fory € Y. Then g induces
amap f:Y — Z suchthat f o p = g. The induced map f is continuous if and only
if g is continuous; f is a quotient map if and only if g is a quotient map.

X
AN
P

Y >Z

f

Proof. Foreachy € Y, theset g(p‘I ({y})) is a one-point set in Z (since g is constant
on p~Y({y))). If welet f(y) denote this point, then we have definedamap f : Y — Z
such that for each x € X, f(p(x)) = g(x). If f is continuous, then g = fopis
continuous. Conversely, suppose g is continuous. Given an open set V of Z, g (V)
is open in X. But g~V = p‘l(f_I(V)); because p is a quotient map, it follows
that £~1(V) is open in Y. Hence f is continuous. .

If f is a quotient map, then g is the composite of two quotient maps and is thus a
quotient map. Conversely, suppose that g is a quotient map. Since g is .suxjectiv.e, SO
is f. Let V be a subset of Z; we show that V' is open inZif f~1(V)isopenin?.
Now the set p~'(f~1(V)) is open in X because p is continuous. Since this set equals
g~ 1(V), the latter is open in X. Then because g is a quotient map, V isopenin Z. W

Corollary 22.3. Letg : X — Z be a surjective continuous map. Let X* be the
following collection of subsets of X:

x*={g D]z}

Give X* the quotient topology. .
(a) The map g induces a bijective continuous map f : X * — Z, which is a homeo-
morphism if and only if g is a quotient map.

(b) If Z is Hausdorff, so is X*.

Proof By the preceding theorem, g induces a continuous map f : X * > Zitis
clear that f is bijective. Suppose that f isa homeomorphism. Then both f and the
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projection map p : X — X* are quotient maps, so that their composite ¢ is a quotient
map. Conversely, suppose that g is a quotient map. Then it follows from the preceding
theorem that f is a quotient map. Being bijective, f is thus a homeomorphism.
Suppose Z is Hausdorff. Given distinct points of X*, their images under f are
distinct and thus possess disjoint neighborhoods U and V. Then f~'(U) and f~1(V)
are disjoint neighborhoods of the two given points of X*. u

EXAMPLE 6. Let X be the subspace of R? that is the union of the line segments [0, 1] x
{n}, for n € Z, and let Z be the subspace of R? consisting of all points of the form
x x (x/n) for x € [0, 1] and n € Z;. Then X is the union of countably many disjoint
line segments, and Z is the union of countably many line segments having an end point in
common. See Figure 22.7.

Define amap g : X — Z by the equation g(x x n) = x x (x/n); then g is surjeCtive
and continuous. The quotient space X* whose elements are the sets g Nizh is simply the
space obtained from X by identifying the subset {0} x Z, to a point. The map g induces a
bijective continuous map f : X* — Z. But f is not a homeomorphism.

To verify this fact, it suffices to show that g is not a quotient map. Consider the
sequence of points x, = (1/n) x n of X. The set A = {x,} is a closed subset of X because
it has no limit points. Also, it is saturated with respect to g. On the other hand, the set g(A)
is not closed in Z, for it consists of the points z, = (1/n) x (l/nz); this set has the origin
as a limit point.

Figure 22.7

EXAMPLE 7.  The product of two quotient maps need not be a quotient map.

We give an example that involves non-Hausdorff spaces in the exercises. Here is an-
other involving spaces that are nicer.

Let X = R and let X* be the quotient space obtained from X by identifying the
subset Z- to a point b; let p : X — X* be the quotient map. Let Q be the subspace of R
consisting of the rational numbers; let i : Q — Q be the identity map. We show that

pxi: X xQ—-X"xQ

is not a quotient map.

Foreachn, letc, = «/i/n, and consider the straight lines in R? with slopes 1 and —1,
respectively, through the point n x ¢,. Let Uy consist of all points of X x Q that lie above
both of these lines or beneath both of them, and also between the vertical lines x = n —1/4
and x = n + 1/4. Then U, isopen in X x Q; it contains the set {n} x Q because c, is not
rational. See Figure 22.8.
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Let U be the union of the sets Uy: then U is open in X x Q. Tt is saturated with respect
to p x i because it contains the entire set Z4 x {g} for each g € Q. We assume that
U’ = (p x i)(U) is open in X* x Q and derive a contradiction. )

Because U contains, in particular, the set Z+ X 0, the set U’ contains the point b x 0.
Hence U’ contains an open set of the form W x I3, where W is a neighborhood of b in X*
and I; consists of all rational numbers y with |y| < &. Then

plWyx I CU.

Choose n large enough that ¢, < 8. Then since p~1 (W) is open in X and contains Z.,
we can choose € < 1/4 so that the interval (n — €, n + €) is contained in p"(W). Then
U contains the subset V = (n — €, n + €) x 5 of X x Q. But the figure makes clear that
there are many points x x y of V that do not lie in U'! (One such is the point x x y, where
X =n+ ¢ and y is a rational number with [y — ¢l < %e.)

v
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Figure 22.8

Exercises

1. Check the details of Example 3.

2. (a) Let p: X — Y be a continuous map. Show that if there is a continuous map
f 1Y — X suchthat po f equals the identity map of ¥, then pisa quotient
map.

(b) If A C X, aretraction of X onto A is a continuous map r : X — A such
that r(a) = a foreach a € A. Show that a retraction is a quotient map.
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3. Letm; : R x R — R be projection on the first coordinate. Let A be the subspace
of R x R consisting of all points x x y for which either x > Oor y = 0 (or both);
letg : A — R be obtained by restricting 1. Show that g is a quotient map that
is neither open nor closed.

4. (a) Define an equivalence relation on the plane X = R? as follows:
Xo X yo~xixy if Xo+y§ =x1+yi.

Let X* be the corresponding quotient space. It is homeomorphic to a familiar
space; what is it? [Hint: Set g(x x y) = x + y2.}
(b) Repeat (a) for the equivalence relation

Xp X Yo~ X| X ¥| ifx§+y§=x|2+y|2.

5. Let p : X — Y be an open map. Show that if A is open in X, then the map
q : A — p(A) obtained by restricting p is an open map.

6. Recall that R denotes the real line in the K-topology. (See §13.) Let Y be
the quotient space obtained from R by collapsing the set X to a point; let
p : Rx — Y be the quotient map.
(a) Show that Y satisfies the T axiom, but is not Hausdorff.
(b) Show that p x p : Rx x Rg — Y x Y is not a quotient map. {Hint: The

diagonal is not closed in Y x Y, but its inverse image is closed in Rg x R .]

*Supplementary Exercises: Topological Groups

In these exercises we consider topological groups and some of their properties. The
quotient topology gets its name from the special case that arises when one forms the
quotient of a topological group by a subgroup.

A topological group G is a group that is also a topological space satisfying the
Ty axiom, such that the map of G x G into G sending x X y into x - y, and the
map of G into G sending x into x !, are continuous maps. Throughout the following
exercises, let G denote a topological group.

1. Let H denote a group that is also a topological space satisfying the T axiom.
Show that H is a topological group if and only if the map of H x H into H
sending x x y into x - y~ ! is continuous.

2. Show that the following are topological groups:
@ (Z,+)
® R, +)
©) R4,
(d) (81, ), where we take S' to be the space of all complex numbers z for which
lz] = 1.
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(e) The general linear group GL(n), under the operation of matrix multiplica-
tion. (GL(n) is the set of all nonsingular n by n matrices, topologized by
considering it as a subset of euclidean space of dimension n? in the obvious
way.)

3. Let H be a subspace of G. Show that if H is also a subgroup of G, then both H
and H are topological groups.

4. Let a be an element of G. Show that the maps fo, g4 : G — G defined by
fax)=a-x and galx)=x-a

are homeomorphisms of G. Conclude that G is a homogeneous space. (This

means that for every pair x, y of points of G, there exists a homeomorphism

of G onto itself that carries x to y.)

5. Let H be a subgroup of G. If x € G, define xH = {x - h | h € H}; this set is
called a left coset of H in G. Let G/H denote the collection of left cosets of H
in G; it is a partition of G. Give G/H the quotient topology.

(a) Show thatifa € G, the map f, of the preceding exercise induces a home-
omorphism of G/H carrying xH to (& - x)H. Conclude that G/H is a
homogeneous space.

(b) Show that if H is a closed set in the topology of G, then one-point sets are
closedin G/H.

(c) Show that the quotient map p : G — G/H is open.

(d) Show that if H is closed in the topology of G and is a normal subgroup of G,
then G/ H is a topological group.

6. The integers Z are a normal subgroup of (R, +). The quotient R/Z is a familiar
topological group; what is it?

7. If A and B are subsets of G, let A - B denote the set of all points a - bforac A
and b € B. Let A~! denote the set of all points a™!, fora € A.

(a) A neighborhood V of the identity element e is said to be symmetric if V =
V-1 If U is a neighborhood of e, show there is a symmetric neighborhood
Vofesuchthat V-V C U. [Hint: f Wisa neighborhood of e, then
W - W—! is symmetric.]

(b) Show that G is Hausdorff. In fact, show that if x # y, there is a neighbor-
hood V of e such that V - x and V - v are disjoint.

(c) Show that G satisfies the following separation axiom, which is called the
regularity axiom: Given a closed set A and a point x not in A, there ex-
ist disjoint open sets containing A and x, respectively. [Hint: There is a
neighborhood V of e suchthat V - x and V - A are disjoint.]

(d) Let H be a subgroup of G that is closed in the topology of G;letp: G —
G/H be the quotient map. Show that G/H satisfies the regularity axiom.
{Hint: Examine the proof of (c) when A is saturated.]

Chapter 3

Connectedness
and Compactness

In the study of calculus, there are three basic theorems about continuous functions
and on these theorems the rest of calculus depends. They are the following: ’

Intermediate value theorem. If f : [a,b] — R is continuous and if r is a real
number between f(a) and f(b), then there exists an element ¢ € {a, b] such that
fleoy=r.

Maximum value theorem. If f : {a, b] — R is continuous, then there exists an
element ¢ € {a, b] such that f(x) < f(c) for every x € [a, b].

Uniform continuity theorem. If f : [a, b] — R is continuous, then given € > 0,
there exists § > 0 such that | f(x1) — f(x2)| < € for every pair of numbers x;, x;
of [a, b] for which |x; — x| < 8.

These theorems are used in a number of places. The intermediate value theorem is
used for instance in constructing inverse functions, such as /x and arcsin x; and the
maximum value theorem is used for proving the mean value theorem for derivatives,
upon which the two fundamental theorems of calculus depend. The uniform continuity
Fheorem is used, among other things, for proving that every continuous function is
integrable.

We have spoken of these three theorems as theorems about continuous functions.
But they can also be considered as theorems about the closed interval [a, b] of real
numbers. The theorems depend not only on the continuity of f but also on properties
of the topological space [a. b].

The property of the space [a, b] on which the intermediate value theorem depends
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