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0 Before the beginning

0.1 Recommended background

Reading 0.1. [AM69, Chapters 1–3, 7], [Vak14, Sections 1.1–1.4]

Familiarity with commutative algebra at the level of [AM69, Chapters 1–3, 7], as well
as basic point set topology, are essential. While category theory is not strictly necessary,
some familiarity is strongly recommended, at the level of [Vak14, Sections 1.1–1.3]. At a
minimum, you should be comfortable with universal properties. I will try to recall basic
facts about limits and colimits as we need them, but if you haven’t already encountered
limits and colimits, you may want to study [Vak14, Section 1.4] too.

Acquanintance with differential geometry or complex analysis (especially Riemann sur-
faces) may be helpful, but is not essential.

0.2 References and how to use these notes

Each section of these notes is meant to correspond to one lecture, but these notes are not
meant to be a complete reference for the course. Their main purpose is to help me organize
the topics we will cover and to summarize what I want to say in lecture. You will need to
consult other sources. In most cases, I have given a list of other references at the beginning
of each section and in the table of contents.

Sometimes the references will cover more material than we do in lecture. It’s always a
good idea to look at this other material, but you may encounter some concepts we haven’t
defined in class. As a rule of thumb, you can skip parts of the reading that aren’t mentioned
in these notes.

I will draw a lot of the course material from Vakil’s Foundations of Algebraic Geometry
[Vak14]. This book is excellent, and if we had more I might have attempted to follow it
linearly. As it is, we are going to jump around quite a lot, which is why I am using these
notes to try to keep things organized.

In many places, the presentation in the notes won’t be quite the same as the presentation
in Vakil’s book. One of the major differences is that I am going to spend more time on
the functor of points. I’m going to trust you to keep the different approaches straight, but
please let me know if things get muddled.

You might want to consult some other texts in case you find their presentation more
compelling. Here are some suggestions:

(i) Hartshorne’s Algebraic Geometry [Har77] is the classic reference. It is a bit terse, and
a majority of the content is in the exercises.

(ii) Mumford’s Red Book of Varieties and Schemes [Mum99] is a very good place to look
for intuition. It is less complete than other references.

(iii) The Stacks Project [Sta15] is a definitive reference for an increasingly complete list of
topics in algebraic geometry. Completeness and generality are often prioritized over
readability, so the Stacks Project works well as a reference for specific results but less
well as a textbook.
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0.3 Goals for this course

The main goal for this course is to give you, the student, enough background to read a
paper or advanced text in algebraic geometry, or to follow an algebraic geometry seminar.
Secondarily, I hope to introduce you to enough algebraic geometry to participate in a summer
research project, if you are interested.

The course is structured around a few theorems that I hope will provide motivation for
the subject, which may otherwise be kind of technical.

0.4 Exercises

You need to do exercises to learn algebraic geometry. You need to do a whole lot of exercises,
many more than I could possibly grade. I will grade some, though, and I will use these to
determine your final grade. Here is what I expect:

(i) You should submit at least 3 exercises per week via D2L (learn.colorado.edu). Except
for pictures, they have to be written in TEX.

(ii) The exercises you do are generally up to you (but see below), but must be relevant to
the topics we are studying. Suggested sources are [Vak14], [Har77], and these notes,
but you can get them from anywhere as long as they are relevant. You can even make
up your own exercises if you want.

(iii) Occasionally I will give longer, guided assignments that will be required. These will be
assigned about once every two weeks. They appear in the sections of the text labelled
by a letter.

(iv) I will grade based on correctness, but also on your selection of appropriate exercises
that are improving your understanding.

(v) Feel free to discuss assignments with anyone you like, and to consult any references
you like. However, if want to use a theorem from a source other than [Vak14], [Har77],
or these notes, please give the statement of the theorem in addition to the citation so
that I don’t have to dig up the reference.

(vi) You must cite any resources you use. You don’t have to cite every source you glance
at in the process of writing your solutions, but if consulting a reference contributes to
your solution to the problem, you need to cite it. Otherwise you are effectively taking
credit for someone else’s work, and that is the definition of plagiarism. If you fail to
cite something you should and I notice it, I will be very unhappy and deal with it
harshly.

It’s good practice to make your citations as precise as possible, so get in the habit of
always referencing numbered statements or page numbers in your citations.

0.5 Acknowledgements

Thanks to all of the students who discovered and corrected errors in this text. Specific
acknowledgements appear with each correction. Thanks also to Shawn Burkett for fixing a
frustrating error in my LATEXcode.

http://learn.colorado.edu


Chapter 1

Introduction to algebraic
geometry

1 Bézout’s theorem

Question 1.1. How many points do two algebraic plane curves have in common?

The answer to this question is Bézout’s theorem. We will discuss several formulations of
this theorem and a sketch of the proof. Our first goal in the course will be to make these
statements, and the proof outlined below, precise.

By an (affine) algebraic plane curve, we will mean the set of solutions to a polynomial
f(x, y) in two variables. We can assume the coefficients of f are real numbers and that we
are looking for solutions in R2, although in a moment we will want to look for solutions in
C2 (and at that point we might as well allow coefficients in C as well).

The first example of an algebraic plane curve is a line. A line is given by a polynomial
ax+by+c where a and b are not both zero. In other words a line is given by a polynomial f
of degree 1. (Degree of a polynomial in x and y is measured by giving both x and y degree
1.)

Exercise 1.2. Show that any line can be parameterized algebraically as (x(t), y(t)).

If f and g define plane curves C and D, then C ∩D is the set of points (x, y) such that
f(x, y) = g(x, y) = 0.

We can try some examples. If C and D are both lines then C ∩D almost always consists
of exactly one point. If the lines are parallel then we get usually get no solutions, but if the
lines are the same, we get infinitely many solutions.

If degC = 1 and degD = d then parameterize C by (x(t), y(t)). The intersection points
correspond to the values of t such that g(x(t), y(t)) = 0. This is a degree d polynomial in t,
so we expect d solutions—at least if we look in C.

However, we don’t always get d solutions, even when d = 2:

(i) Suppose g(x, y) = x2 + y2 − 1 and y(t) = 1 and x(t) = t. Then g(x(t), y(t)) = t2 has
just one solution (in any field).

(ii) Suppose g(x, y) = xy and x(t) = t and y(t) = 0. Then there are infinitely many
solutions (any value of t).

11
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(iii) Suppose that g(x, y) = xy − 1 and x(t) = t and y(t) = 1. Then g(x(t), y(t)) = 1 there
are no solutions at all.

What is going on geometrically? In the first case, we have a tangency. But suppose we
move the line a little. Take x(t) = t and y(t) = s. For different values of s we get different
lines, and as long as s is near to but not equal to 1, we get two points of intersection. Thus
we expect that most curves C and D (whatever that means), won’t have a tangency, and
this phenomenon won’t occur.

In the second example, the line is a component of the curve D and we get infinitely
many intersections. Again, we can try moving the line. If we try something like x(t) = t
and y(t) = s(t + 1) then for s 6= 0 but near 0, we have two intersection points. Once
again, we will be able to say that most curves C and D, don’t share a component, so this
phenomenon also does not usually occur. (Technically, this example is a special case of the
previous one: It is a tangency of infinite order.)

In the last example, there is only one point of intersection when we expect two. Geo-
metrically, we can see that C is parallel to an asymptote of D. If we deform C a little, say
by taking x(t) = t and y(t) = 1 + st then as long as s is close but not equal to zero we get
two solutions. As s → 0, one of the solutions escapes to infinity. Once again, we can say
that most lines intersect D in two points.

In view of these observations, we exclude pairs of curves C and D that are tangent, share
components, or share asymptotes in Question 1.1.

More subtly, we have seen that making small changes to our curves C and D does not
change the number of points of intersection between them, as long as the small changes do
not introduce tangencies, common components, or common asymptotes. That is, if Ct and
Dt are one-parameter families of curves such that for no value of t do Ct and Dt have a
tangency, common component, or common asymptote, then |Ct ∩Dt| is constant.

The final ingredient in a proof of Bézout’s theorem will be to observe that for any
curves C and D (satisfying our assumptions) there is a 1-parameter family Ct and Dt (also
satisfying our assumptions for each value of t) with C0 = C and D0 = D such that C1

consists of degC lines and D1 consists of degD1 lines.
We can compute very easily that |C1 ∩ D1| = deg(C) deg(D). Putting all of these

observations together, we have

|C ∩D| = |C1 ∩D1| = deg(C) deg(D).

This proves Bézout’s theorem:

Theorem 1.3 (Bézout’s theorem in the affine plane). For most algebraic plane curves C
and D we have |C ∩D| = deg(C) deg(D).

‘Most curves’ may be interpreted to include curves that are not tangent, do not have
parallel asymptotes, and do not have any components in common.

1.1 Projective space

If you have encountered Bézout’s theorem before, you have probably seen a more precise
version. The first way we can improve the statement is to consider the asymptotes more
carefully.

Consider g(x, y) = xy− 1 and f(x, y) = y− 1. Then C has degree 1 and D has degree 2,
so we expect their intersection to consist of two points. When we replaced C with a nearby
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curve Cs, this was indeed the case, but as s → 0, one of those intersection points escaped
to infinity and was replaced by a common asymptote. The asymptote really wants to be an
intersection point!

If we count asymptotes as intersection points, maybe we can get a better version of
Bézout’s theorem. Unfortunatley, this isn’t quite right: Consider g(x, y) = xy − 1 and
f(x, y) = y. This time there are no intersection points at all, but moving C slightly we see
that two intersection points are escaping to the same asymptote. In fact, this means that
C and D are tangent at infinity.

We can get a better sense of what is going on with a change of coordinates. Let x1 = x−1

and y1 = y/x. Note that these coordinates don’t make sense near x = 0, but they do make
sense when x is very large. The asymptotic intersection occurs at (x1, y1) = (1, 0).

In these coordinates, the equation for D is y1/x
2
1 − 1 = 0 or, rearranging, y1 = x2

1. The
equation for C is y1/x1 = 0, or just y1 = 0 by rearranging. These two curves are indeed
tangent.

Secretly, we are working in local coordinates on the projective plane. By definition, the
projective plane CP2 consists of all 1-dimensional subspaces in the 3-dimensional complex
vector space C3. For each point (x, y) of C2 we have a line in C3 spanned by the vector
(x, y, 1). Thus C2 is contained in CP2, but CP2 is bigger. If we let (x, y) approach infinity
in C2, the corresponding point of CP2 approaches a legitimate limit. (In other words, CP2

is compact.)

Theorem 1.4 (Bézout’s theorem in the projective plane). For most projective algebraic
plane curves C and D, the intersection C ∩D consists of deg(C) deg(D) points.

‘Most curves’ may be interpreted to include curves that share no components and no
tangencies.

1.2 Multiplicities

The statement of Bézout’s theorem can be improved even more. We’ve noticed that tangen-
cies correspond to collisions of pairs intersection points. Higher order tangencies correspond
to higher order collisions:

Exercise 1.5. Let C be defined by y − x3 = 0 and let D be defined by y = 0. Show that
the intersection C ∩ D is a single point, but that if D is deformed to a nearby line, there
are 3 points of intersection.

We can see the tangency algebraically. If we intersect y− x3 = 0 with x = 0, we get the
equations x = y = 0. This reflects the fact that these two curves intersect transversally. On
the other hand, intersecting with y = 0 gives x3 = y = 0. This is a different equation that
has the same solutions in C as x = y = 0. However, it has different solutions in some rings
that are not fields. This precisely reflects the fact that one line is tangent (to second order)
and the other is not.

In the theory of schemes, not all points are treated equally. The equation y = x3 = 0
defines a fatter point than does y = x = 0.

Exercise 1.6. (i) Show that y = x = 0 and y = x3 = 0 have the same set of solutions in
any field.

(ii) Find a commutative ring A such that y = x = 0 and y = x3 = 0 have different solution
sets in A.
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Theorem 1.7 (Bézout’s theorem with multiplicities). For most projective algebraic plane
curves C and D, the intersection C ∩ D consists of deg(C) deg(D) points when counted
with multiplicity.

‘Most curves’ may be interpreted to include curves that share no components.

1.3 Intersection theory or derived algebraic geometry

The key in all of this discussion has been to consider moving our curves slightly. Intersection
theory and derived algebraic geometry build this into the definition of intersection, yielding
a very clean statement:

Theorem 1.8 (Bézout’s theorem in intersection theory). All projective algebraic plane
curves C and D intersect in deg(C) deg(D) points, provided the intersection is interpreted
via intersection theory.

1.4 Some more enumerative questions

Question 1.9. If L1, . . . , L4 are four lines in C3 how many lines L meet all four of them?

Question 1.10. If X is a surface in C3 defined by a cubic polynomial, how many lines lie
on X?

2 A dictionary between algebra and geometry

In this section, we are going to investigate how geometric concepts are manifested alge-
braically and vice versa.

2.1 Points and functions

The most basic algebraic object we have at our disposal is an element of the ring C[x1, . . . , xn].
We regard these as functions from Cn to C.

The most basic geometric concept is that of a point. If ξ ∈ Cn is a point then we obtain
a homomorphism

evξ : C[x1, . . . , xn]→ C

evξ(f) = f(ξ).

Exercise 2.1 (Easy). Verify that this actually is a homomorphism and that it is surjective.

Since evξ is surjective, its kernel is a maximal ideal, mξ. Hilbert’s Nullstellensatz says
that these are the only maximal ideals of C[x1, . . . , xn]:

Theorem 2.2 (Corollary to Hilbert’s Nullstellensatz). Every maximal ideal of C[x1, . . . , xn]
is of the form (x1 − ξ1, . . . , xn − ξn) for some ξ = (ξ1, . . . , ξn) ∈ Cn.
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2.2 Algebraic subsets

Definition 2.3. If J ⊂ C[x1, . . . , xn] is a set of polynomials then V (J) is the set of all
ξ ∈ Cn such that f(ξ) = 0 for all f ∈ J . An algebraic subset of Cn is a subset that is equal
to V (J) for some set J .

If X is a subset of Cn, we define I(X) to be the set of all f ∈ C[x1, . . . , xn] such that
f(ξ) = 0 for all ξ ∈ X.

Exercise 2.4 (A commutative algebra warmup). (i) Let J ′ be the radical ideal gener-
ated by J . Show that V (J) = V (J ′).1

(ii) For any X ⊂ Cn show that I(X) is a radical ideal of C[x1, . . . , xn].

Theorem 2.5 (Hilbert’s Nullstellensatz). If J ⊂ K[x1, . . . , xn] is an ideal then I(V (J)) =√
J .

Exercise 2.6 (Easy, given the previous exercise). Use the Nullstellensatz to prove that
V (I(X)) = X for any algebraic subset of Cn.

Exercise 2.7 (Easy, given the previous exercise). Give a one-to-one correspondence between
algebraic subsets of Cn and (isomorphism classes of) surjections C[x1, . . . , xn]→ A with A
reduced.2

2.3 Morphisms of algebraic subsets

We already know what an algebraic function from Cn to C is: It’s just a polynomial in the
variables x1, . . . , xn. In other words, it’s an element of C[x1, . . . , xn]. If X is an algebraic
subset of Cn then we declare that a morphism from X to C is an element of C[x1, . . . , xn]
with f and g considered equivalent if f(ξ) = g(ξ) for all ξ ∈ Cn.

Exercise 2.8. (i) Show that the morphisms from an algebraic set X ⊂ Cn to C are in
canonical bijection with C[x1, . . . , xn]/I(X).

(ii) Show that the maximal ideals of C[x1, . . . , xn]/I(X) are the same as the maximal
ideals of C[x1, . . . , xn] that contain I(X) are the same as the points of X. (Hint: You
will want to use the Nullstellensatz (Theorem 2.2) here.)

Suppose X ⊂ Cn and Y ⊂ Cm are algebraic subsets. What is a morphism X → Y ? We
should certainly have a morphism X → Cm in this case, which amounts to m morphisms
from X to C. That is, it means we have m elements of A = C[x1, . . . , xn]/I(X), which we
can also regard as a homomorphism

C[y1, . . . , ym]→ A.

Notice that the left side is the set of algebraic functions on Cm and the right side is the
set of algebraic functions on X. If ϕ denotes the map X → Cm then this homomorphism
just sends a function f ∈ C[y1, . . . , ym] to f ◦ϕ ∈ A. We usually write ϕ∗f for the function
f ◦ ϕ.

What does it mean for the image of ϕ to lie inside Y ? It means that for any f ∈ I(Y )
and ξ ∈ X we have f(ϕ(ξ)) = 0. In other words, ϕ∗f(ξ) = 0 for all ξ ∈ X. If g is

1An ideal J ′ is called radical if fn ∈ J ′ =⇒ f ∈ J ′.
2A commutative ring is reduced if it has no nonzero nilpotent elements.
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a representative for ϕ∗f in C[x1, . . . , xn] then this means g ∈ I(X). Thus ϕ∗f = 0 in
A = C[x1, . . . , xn]/I(X).

Thus our condition that ϕ define a map X → Y is that ϕ∗I(Y ) = 0 in A. By the
universal property of the quotient ring, this means ϕ∗ can be regarded as a homomorphism

B = C[y1, . . . , ym]/I(Y )→ C[x1, . . . , xn]/I(X) = A.

Of course, this isn’t surprising when we think about B as the ring of functions on Y . If
we have a map ϕ : X → Y and f is a function on Y then f ◦ ϕ is a function on X.

2.4 Abstract algebraic sets

In the last section, we saw that every algebraic set X ⊂ Cn gave rise to a reduced, finite
type C-algebra. Conversely, every reduced, finite type C-algebra is the quotient of some
C[x1, . . . , xn] by a radical ideal, hence corresponds to an algebraic set. Different choices of
generators give different embeddings in C[x1, . . . , xn] give different embeddings in Cn, but
the different algebraic sets are all isomorphic, according to our definition of morphisms of
algebraic sets above.

Exercise 2.9. Show that there is a contravariant equivalence between algebraic sets and
reduced3 finite type4 C-algebras.

2.5 Tangent vectors

Exercise 2.10. (i) Let ξ ∈ C. Construct an identification C[x]/m2
ξ ' C[ε]/(ε2) sending

x− ξ to ε.

(ii) Show that under this identification, the map

C[x]→ C[x]/mξ ' C[ε]/(ε2)

sends f ∈ C[x] to f(ξ) + εf ′(ξ). (Suggestion for how to think about this: Interpret x
as ξ + ε and think about the Taylor series.)

Exercise 2.11. (i) Show that for any tangent vector v at a point ξ ∈ Cn the function

δ : C[x1, . . . , xn]→ C[ε]/(ε2)

δ(f) = f(ξ) +
(
v · ∇f(ξ)

)
ε

is a homomorphism (∇f denotes the gradient).

(ii) Show that every tangent vector arises this way for a unique homomorphism. (Hint:
Write δ(f) = ϕ0(f) + εϕ1(f). Set ξi = ϕ(xi) to get the point. Set vi = ϕ1(xi) to get
the vector.)

The next two exercises are not recommended. A lot of subtleties arise.

Exercise 2.12. Generalize the previous exercise to give an identification

TX ' HomC-Alg(C[x1, . . . , xn]/I(X),C[ε]/(ε2))

when X = V (J) ⊂ Cn is a manifold.5

3This means ‘has no nilpotents’.
4This means ‘finitely generated as a commutative ring’.
5This identification is always true once one has defined the tangent space of a singular space. We will

later take this as the definition of the tangent space.
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Geometry Algebra

ξ ∈ Cn evξ : C[x1, . . . , xn]→ C
mξ ⊂ C[x1, . . . , xn] maximal ideal

f : Cn → C f ∈ C[x1, . . . , xn]
C[y]→ C[x1, . . . , xn]

X ⊂ Cn algebraic subset I ⊂ C[x1, . . . , xn] radical ideal
C[x1, . . . , xn]→ A surjective,
A reduced, finite type C-algebra

algebraic set X
X = Hom(A,C)

reduced, finite type C-algebra
A = Hom(X,C)

morphism of algebraic sets
f : X → Y

homomorphism of commutative rings
B → A

tangent vector (ξ, v) ∈ TX v ∈ (mξ/m
2
ξ)
∨

A→ C[ε]/(ε2)

affine scheme X commutative ring A

morphism of affine schemes X → Y morphism of commutative rings B → A

Exercise 2.13. Show that when X is a compact complex manifold,

TX ' HomC-Alg(C∞(X),C[ε]/(ε2)).

A similar statement holds for real manifolds.

So far, we have shown that reduced, finite type C-algebras correspond to algebraic sets.
The algebra C[ε]/(ε2) is not reduced, but if we broaden our horizons just a little and pretend
it corresponds to a space D then we have

TX = Hom(D,X).

That is D is the universal point with tangent vector ! It will turn out that D is a scheme
that really does consist of one point with a little bit of infinitesimal ‘fuzz’ around it.

Theorem 2.14 (Nullstellensätze). (i) (Zariski’s lemma) If K is a field and L is a field
extension of K that is finitely generated as a commutative ring then L is finite dimen-
sional over K.

(ii) (Weak Nullstellensatz) Let K be an algebraically closed field. Let J ⊂ K[x1, . . . , xn]
be an ideal. Then V (J) = ∅ if and only if

√
J = K[x1, . . . , xn].

(iii) (Hilbert’s Nullstellensatz) If J ⊂ K[x1, . . . , xn] is an ideal then I(V (J)) =
√
J .

(iv) If K is an algebraically closed field then the maximal ideals of K[x1, . . . , xn] are all of
the form (x1 − ξ1, . . . , xn − ξn) for ξi ∈ K.

Exercise 2.15 (Some parts of this exercise are likely to be hard). Show that the different
statements of Hilbert’s Nullstellensatz are equivalent.
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We won’t prove the Nullstellensatz for a while. The modern perspective on algebraic
geometry treats all prime ideals as points, not just the maximal ideals, so the Nullstellensatz
isn’t quite as fundamental. The Nullstellensatz for prime ideals is much easier, and we will
prove it in the next lecture.

3 The prime spectrum and the Zariski topology

Reading 3.1. [Vak14, §§3.2–3.5, 3.7], [Mum99, §II.1], [AM69, Chapter 1, Exercises 15–28],
[Har77, pp. 69–70]

3.1 The Zariski topology

In the last section, we saw that the points of Cn can be recovered algebraically from the
ring C[x1, . . . , xn]. However, the topology of Cn can’t be recovered algebraically. In this
section we will see how to get a topology that is coarser than the usual topology on Cn. The
construction is quite general, and works with C[x1, . . . , xn] replaced by any commutative
ring.

Definition 3.2 (The prime spectrum). We write SpecA for the set of prime ideals of a
commutative ring A. For each p ∈ SpecA, let

k(p) = frac(A/p).

This is called the residue field of p. We define

evp : A→ A/p→ frac(A/p) = k(p)

be the homomorphism that sends f to f mod p. It is convenient to write f(p) instead of
evp(f), although one must take care to remember that f(p) and f(q) don’t always live in
the same set when p 6= q.

For any J ⊂ A, let

V (J) = {p ∈ SpecA
∣∣ evp(J) = 0}.

Equivalently, V (J) is the set of p ∈ SpecA such that J ⊂ p.
We write D(J) for the complement of V (J) in SpecA. When we need to emphasize

the ring A, we write IA, VA, DA, etc. When J consists of just one element f , we write
V (f) = V ({f}) and D(f) = D({f}).

A subset Z ⊂ SpecA is called closed if Z = V (J) for some J ⊂ A. A subset U ⊂ SpecA
is called open if U = D(J) for some ideal J . Sets of the form D(f) for f ∈ A are called
principal open subsets or distinguished open subsets.

We also define

I(Z) = {f ∈ A
∣∣ f(Z) = 0} =

⋂
p∈Z

p.

Question 3.3. Here is something to think about: Is every open subset principal? We will
answer this question later.

Exercise 3.4. Let p be a prime ideal of A. Show that {p} is a closed subset of SpecA if
and only if p is a maximal ideal.
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The exercise shows that this topology usually is not Hausdorff. It contains many points
that are not closed. This sounds pathological, but it turns out to be convenient once you
get used to it.

Exercise 3.5. Show that

V (
∑

Ji) =
⋂
V (Ji)

V (JK) = V (J) ∪ V (K)

for any ideals J and K. Conclude that the definitions of open and closed sets in Definition 3.2
give a topology, called the Zariski topology.

3.2 Examples

Here are some useful facts from commutative algebra that you may want to recall for the
following exercise and later ones:

Theorem 3.6. (i) A principal ideal domain is a unique factorization domain.

(ii) If A is a unique factorization domain then A[x] is a unique factorization domain.

(iii) In a unique factorization domain, the ideal generated by an irreducible element is
prime.

Exercise 3.7. Suppose k is a field.

(i) Show that Spec k is a single point.

(ii) Show that Spec k[ε]/(ε2) is a single point.

(iii) Show that Spec(k × k) consists of two points. What is the topology?

Exercise 3.8. Describe the points and topology of Spec Z.

Exercise 3.9. (i) Describe the points and topology of Spec C[x].

(ii) Describe the points and topology of Spec R[x].

(iii) Describe the points and topology of Spec Q[x].

Exercise 3.10. Suppose A is a domain. Show that SpecA contains a point that is dense.
This is called the generic point of SpecA.

Exercise 3.11. Give a point of Spec C[x, y] that is neither a point of C2 nor the generic
point.

3.3 Basic properties

Exercise 3.12. Suppose that A is a commutative ring and f ∈ A. Show that there is a
universal homomorphism ϕ : A→ B such that ϕ(f) is invertible. (Hint: B = A[u]/(uf−1).)

Exercise 3.13. (i) Show that D(J) =
⋃
f∈J D(f).

(ii) Show that the intersection of two principal open subsets is a principal open subset.
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(iii) Conclude that the principal open subsets of SpecA form a basis of the Zariski topology.

Exercise 3.14 (Unions of principal open affine subsets. Important!). (i) Suppose A is a
commutative ring and f1, . . . , fn ∈ A. Show that SpecA =

⋃
D(fi) if and only if

(f1, . . . , fn)A = A.

(ii) Conclude that SpecA is quasicompact6 for any commutative ring A.

Exercise 3.15 (The prime Nullstellensatz). This is much easier than Hilbert’s Nullstellen-
satz, which might also be called the maximal Nullstellensatz.

(i) (You may want to use this one to prove the next one, or you may want to skip this
part because it is a special case of the next one.) For any commutative ring A, show
that IA(SpecA) is the radical of A. (Hint: Let f be an element of A that is contained
in every prime ideal. Consider A[f−1]. What are its prime ideals?)

(ii) For any commutative ring A and any subset J ⊂ A, show that I(V (J)) is the radical
ideal generated by J . (Hint: Reduce to the previous part by replacing A with A/J .
Or imitate the proof of the previous part.)

(iii) Conclude that Z ⊂ SpecA is closed if and only if Z = V (I(Z)).

Residue fields

We give two categorical characterizations of the points of the prime spectrum.

Exercise 3.16 (Minimal homomorphisms to fields). Call a homomorphism from A to a field k minimal if,
whenever L and K are fields and there is a commutative diagram of solid lines

k

  

��

A

>>

  

L

K

>>

there is a unique dashed arrow extending the diagram. Two homomorphisms f : A→ k and g : A→ k′ are
said to be isomorphic if there is an isomorphism h : k → k′ with hf = g.

Show that the points of SpecA correspond to isomorphism classes of minimal homomorphisms A→ k,
where k is a field.

Exercise 3.17 (Epimorphisms to fields). A morphism of commutative rings f : A→ B is called an epimor-
phism if, for any commutative ring C, composition with f induces an injection Hom(B,C) → Hom(A,C).
In other words, f is an epimorphism if, for any homomorphisms g, h : B → C, we have gf = hf if and only
if g = h.

(i) Show that any surjective homomorphism is an epimorphism.

(ii) Not every epimorphism is a surjection: Suppose that A is an integral domain and B is its field of
fractions. Show that A → B is an epimorphism. (More generally, show that any localization is an
epimorphism.)

6This is what people in North America usually call compact. It means that every open cover of SpecA
has a finite subcover.
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(iii) (This part may be difficult. The proof suggested below works in much greater generality, and we
will see it repeatedly.) Show that a homomorphism from a commutative ring A to a field K is an
epimorphism if and only if the image of A generates K as a field. (Hint: Replace A with the field
generated by its image in k. Show that k → K is an epimorphism if and only if k = K by taking
C = K ⊗A K in the definition of an epimorphism. Let i, j : K → K ⊗k K be given by i(x) = 1⊗ x
adn j(x) = x⊗ 1. Prove that i = j if and only if k = K by proving the sequence

0→ k → K
i−j−−→ K ⊗k K

is exact. Do this by proving the sequence

0→ K → K ⊗k K
i′−j′−−−−→ K ⊗k K ⊗k K

with i′(y ⊗ x) = y ⊗ 1 ⊗ x and j′(y ⊗ x) = y ⊗ x ⊗ 1 is exact. To verify this, show that the maps
K ⊗k K → K sending y ⊗ x to yx and K ⊗k K ⊗k K → K ⊗k K sending z ⊗ y ⊗ x to zy ⊗ x split
the sequence.

3.4 Functoriality

Exercise 3.18 (Functoriality of the prime spectrum). Suppose f : A → B is a homomor-
phism of commutative rings. Show that p 7→ f−1p defines a function Spec f : SpecB →
SpecA. Show that this definition respects composition of homomorphisms.

Exercise 3.19. Let ϕ : A → B be a homomorphism and let u : SpecB → SpecA by the
induced morphism of spectra. Show that u−1D(f) = D(ϕ(f)).

Exercise 3.20. Show that every point of SpecA corresponds to a homomorphism of com-
mutative rings A→ k for some field k.

Exercise 3.21 (The universal property of an open subset). Let J ⊂ A be any subset and
let D(J) ⊂ SpecA be an open subset. Show that the map SpecB → SpecA associated to
f : A→ B factors through D(J) if and only if f(J)B = B.

Exercise 3.22 (The universal property of a closed subset). Show that ϕ : A→ B induces
a map g : SpecB → SpecA factoring through V (J) if and only if f(J)B is a nilideal (every
element is nilpotent).

These two exercises will be generalized later, so there is no need to do them now except to build intuition.

Exercise 3.23 (Fibers of morphisms of spectra). Suppose that A→ B is a homomorphism of commutative
rings and f : SpecB → SpecA is the corresponding map on spectra. Let p be a point of SpecA and let
A→ k be the corresponding homomorphism from A to a field k. Identify f−1p with Spec(B ⊗A k). (Hint:
A homomorphism from B to a field K such that A → B → K factors through k is precisely the same as a
homomorphism B ⊗A k → K.)

Exercise 3.24 (Surjectivity of integral morphisms). Suppose A is a commutative ring and f is an integral
polynomial with coefficients in A. Let B = A[t]/(f). Show that SpecB → SpecA is surjective. (Hint:
Reduce to the case where A is a field.)

3.5 More examples

Exercise 3.25. If R is a discrete valuation ring then SpecR consists of two points, one
open and dense and the other closed. (If you don’t know what a discrete valuation ring is,
assume R = C[t](t) or R = Z(p).)

Exercise 3.26. Describe the points and topology of C[x, y](x,y).



22 CHAPTER 1. INTRODUCTION TO ALGEBRAIC GEOMETRY

Exercise 3.27. Describe the points and topology of Z[x].

Exercise 3.28. Let A′ → A be a surjection of commutative rings whose kernel is nilpotent.
Show that the map SpecA→ SpecA′ is a homeomorphism.

Exercise 3.29. Suppose A is a commutative ring.

(i) Let p be a prime ideal of A. Show that {p} is dense in V (p). Conclude that V (p) is
irreducible: it is impossible to write V (p) as the union of two closed subsets A ∪ B
unless at least one of them is equal to V (p) itself.

(ii) Suppose that Z ⊂ SpecA is an irreducible subset. Show that there is a unique prime
ideal p ⊂ A such that V (p) = Z.



Chapter 2

Introduction to schemes

4 Sheaves I

Reading 4.1. [Vak14, §§2.1–2.4, 2.7 (pp. 69–83)], [Har77, §II.1 (pp. 60–65)]

4.1 Why sheaves?

In geometry, one usually has a ring of functions associated to a space. For example, in
differential geometry one can take the ring of C∞ functions, valued in R or in C. In
topology, one has a ring of continuous functions, valued in R or C (or any topological ring).

In algebraic geometry, we turn this around and declare that every commutative ring
should be the ring of functions on some space, which we call an affine scheme. We also allow
ourselves to glue spaces together along open subsets. In a sense, schemes are the minimal
collection of spaces that can be constructed from these axioms.

It is possible to proceed quite formally along these lines, and we will discuss this in
Lecture ??. For the sake of concreteness, and adherence to historical conventions, we will
first give a definition in which schemes do have an underlying space. However, there will be
one very strange departure: functions are not determined by their values at points.

Exercise 4.2. Give an example of a commutative ring A and two elements f, g ∈ A such
that evξ(f) = evξ(g) for all ξ ∈ SpecA. Interpret this as the failure of functions to be
determined by their values at points.

In differential geometry, for example, one can describe the maps of differentiable mani-
folds X → Y as the functions on the underlying sets that have some desirable local property.
Since functions in algebraic geometry are not determined by their values at points, one can-
not specify morphisms between schemes this way. Instead, we need to explicitly specify the
ring of functions. We describe a morphism of schemes as a morphism of topological spaces
with compatible homomorphism between their rings of functions.

But schemes can be glued together from affine schemes in nontrivial ways. In contrast
to differentiable manifolds, where the global functions always determine the local functions,
schemes often do not have many global functions at all. In fact, one already sees this in
complex geometry:

Exercise 4.3. Show that all holomorphic functions from a compact Riemann surface to C are constant.

23



24 CHAPTER 2. INTRODUCTION TO SCHEMES

Locally, a scheme may have a lot of functions, but these can fail to glue together to give
global functions. When thinking about functions on a scheme, one is therefore obliged to
think about functions on all open subsets simultaneously. In other words, one thinks about
the sheaf of functions, not just the sheaf’s ring of global sections.

4.2 Definitions

Definition 4.4. Let X be a topological space. A presheaf (of sets) on X consists of the
following data and conditions:

PSH1 a set F (U) for each open U ⊂ X (one often writes Γ(U,F ) = F (U));

PSH2 a function ρUV : F (U)→ F (V ) whenever V ⊂ U are open subsets of X;

PSH3 equality ρVW ◦ ρUV = ρUW when W ⊂ V ⊂ U are open subsets of X.

A presheaf is called a sheaf if it satisfies the following additional conditions:

SH1 if ξ, η ∈ F (U) and
⋃
Ui = U and ξ

∣∣
Ui

= η
∣∣
Ui

for all i then ξ = η;

SH2 if
⋃
Ui = U and ξi ∈ F (Ui) for all i and ξi

∣∣
Ui∩Uj

= ξj
∣∣
Ui∩Uj

then there is a

ξ ∈ F (U) such that ξ
∣∣
Ui

= ξi for all i.

We obtain sheaves of groups, abelian groups, rings, commutative rings, etc. by substituting
the appropriate concept for set and the appropriate notion of homomorphism for function
in the definition of a presheaf.

Exercise 4.5. (i) All presheaves on a point are sheaves.

(ii) The category of sheaves on a point is equivalent (in fact isomorphic) to the category of sets.

Exercise 4.6. Suppose F is a sheaf on a topological space. Prove that F (∅) is a 1-element
set.

4.3 Examples of sheaves

Exercise 4.7 (Constant presheaf). Let X be a topological space and let S be a set with
at least 2 elements. Define F (U) = S for all open U ⊂ X. Give an example of X for which
F is not a sheaf. (Hint: Exercise 4.9 below may give a hint.) For almost any space X you
pick, F will not be a sheaf, but try to find a simple example.

Exercise 4.8 (Subsheaves). If F and G are presheaves, we say that F is a subpresheaf of
G if F (U) ⊂ G(U) for all U . Suppose that G is a sheaf and F is a subpresheaf of G. Prove
that F is a sheaf if and only if whenever ξ ∈ G(U) and there is an open cover of U by sets
V such that ξ

∣∣
V
∈ F (V ) then ξ ∈ F (U).

Exercise 4.9 (Sheaf of functions). You should do at least one of this exercise or the next.
Let X and Y be topological spaces and define F (U) to be the set of continuous functions

U → Y , for each U ∈ Open(X). Show that F is a sheaf.
The collection of all functions is also a sheaf. If X and Y are manifolds, the differentiable

functions form a sheaf.

Exercise 4.10 (Sheaf of sections).This exercise
generalizes the

previous one. It will be
important later, but it
is not essential to do it
now. Later we will see
that every sheaf arises

from the following
construction!

Suppose that π : E → X is a continuous function. For each open U ⊂ X, let F (U) be
the set of continuous functions σ : U → E such that π ◦ σ = idU . These are called sections
of E over U . Prove that F is a sheaf.
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4.4 Morphisms of sheaves

Definition 4.11. If F and G are presheaves on a topological space X, a morphism ϕ : F →
G consists of functions ϕU : F (U)→ G(U) such that whenever V ⊂ U is an open subset we
have ρUV ◦ ϕU = ϕV ◦ ρUV .

A morphism of sheaves is a morphism of the underlying presheaves.

Exercise 4.12 (The sheaf of morphisms).? Suppose that F and G are presheaves on X. For

each open U ⊂ X, let H(U) = HomSh(U)(F
∣∣
U
, G
∣∣
U

).

(i) Show that H is a presheaf in a natural way.

(ii) Show that if G is a sheaf then H is a sheaf.

4.5 Sheaves are like sets

Virtually any definition concerning sets can be interpreted in Sh(X) if we interpret ∀ and
∃ as follows:

(i) ∀ ξ ∈ F means “for all open U and all ξ ∈ F (U). . . ”

(ii) ∃ ξ ∈ F means “there is an open cover Ui and ξi ∈ F (Ui). . .

For example:

Definition 4.13. A morphism of sets ϕ : F → G is injective if for all ξ, η ∈ F we have
ϕ(ξ) = ϕ(η) only if ξ = η. A morphism of sheaves ϕ : F → G is injective if, for all open
subsets U of X and all ξ, η ∈ F (U), we have ϕ(ξ) = ϕ(η) only if ξ = η.

A morphism of sets ϕ : F → G is surjective if for all η ∈ G there is some ξ ∈ F such
that ϕ(ξ) = η. A morphism of sheaves of sets ϕ : F → G is surjective if, for all open U ⊂ X
and all η ∈ G(U), there is an open cover U =

⋃
Vi and elements ξi ∈ F (Vi) such that

ϕ(ξi) = η
∣∣
Vi

.

Exercise 4.14. The axiom of choice says that for every surjection ϕ : F → G there is a
morphism σ : G → F such that ϕ ◦ σ = idG. Show that the axiom of choice is false in
Sh(S1), where S1 is the circle. (Hint: Let F be the sheaf of sections of the universal cover
R→ S1 and let G be the final sheaf G(U) = 1 for all open U ⊂ S1.)

Exercise 4.15. Show that a morphism of sheaves ϕ : F → G is an isomorphism if and only
if it is bijective (both injective and surjective).

4.6 Sheaves on a basis

Reading 4.16. [Vak14, §2.7]

Suppose X is a topological space and U ⊂ Open(X) is a basis of X. The definition of a
presheaf on U is obtained by substituting U for Open(X) in Definition 4.4. The definition
of a sheaf requires a small modification in condition SH2.

Definition 4.17. Let U be a basis for a topological space X. A presheaf on U is said to
be a sheaf if it satisfies SH1 and
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SH2′ if U =
⋃
i,j∈I Ui is an open cover in U , and ξ ∈ F (Ui) are elements such that, for

each i, j ∈ I, there is an open cover Ui ∩Uj =
⋃
k∈Kij

Vijk with ξi
∣∣
Vijk

= ξj
∣∣
Vijk

for all

k ∈ Kij , then there is a ξ ∈ F (U) such that ξ
∣∣
Ui

= ξi for all i ∈ I.

Exercise 4.18. Show that if SH1 holds for F and U is stable under finite intersections,
conditions SH2 and SH2′ are equivalent.

Theorem 4.19. Suppose U ⊂ Open(X) is a basis. If F is a sheaf on U then F extends
in a unique way (up to unique isomorphism) to a sheaf on Open(X).

This procedure can be viewed as an example of sheafification, which we will discuss in
Lecture 8 using the espace étalé.

For each V ∈ Open(X), define

G(V ) = lim←−
U∈U
U⊂V

F (U).

In case you are not familiar with limits, here is an explicit description of this limit: It is a
tuple (ξU )U∈U

U⊂V
with each ξU ∈ F (U) such that whenever U ′ ⊂ U we have ξU

∣∣
U ′

= ξU ′ .

Exercise 4.20. Construct a canonical isomorphism G
∣∣
U
' F .

If H is any sheaf extending F to Open(X) then consider ξ ∈ H(V ). For every U ⊂ V
in U , we have ξ

∣∣
U
∈ F (U) and ξ

∣∣
U

∣∣
U∩U ′ = ξ

∣∣
U ′

∣∣
U∩U ′ so ξ determines an element of G(V )

(using SH2). This element is unique by SH1.

Exercise 4.21. Fill in the details from the last paragraph to show that if there is a sheaf
H extending F then there is a unique isomorphism H → G.

Exercise 4.22. Complete the proof by showing G is a sheaf.

Exercise 4.23. Show that a morphism of sheaves defined on a basis of open sets extends
uniquely to a morphism defined on the whole space.

5 Ringed spaces and schemes

Reading 5.1. [Vak14, §§3.2, 3.4, 3.5, 4.1, 4.3], [Mum99, §II.1], [Har77, pp. 69–74]

Definition 5.2 (Ringed space). A ringed space is a pair (X,OX) where X is a topological
space and OX is a sheaf of commutative rings on X.

We usually write X for a ringed space (X,OX), effectively using the same symbol for
both the underlying space and the space together with its structure sheaf. This is an abuse
of terminology, but usually doesn’t cause too much trouble. If we must distinguish X from
its underlying topological space, we write |X| for the topological space.

There are many familiar examples:

Exercise 5.3.Not an important
exercise to write up

carefully.

The following are ringed spaces:

(i) X is a manifold and OX is the sheaf of C∞ functions on X valued in R or C;
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(ii) X is a topological space and OX is the sheaf of continuous functions on X, valued in
any topological commutative ring;

(iii) X is a complex manifold and OX is the sheaf of holomorphic functions on X;

Exercise 5.4.This exercise is very
important! It

illustrates all kinds of
useful techniques.

Let A be a commutative ring. Define OSpecA(D(f)) = A[f−1] for each
principal open affine D(f) ⊂ SpecA.

(i) Define the restriction homomorphisms in a natural way so that this is a presheaf of
commutative rings on the basis of principal open subsets SpecA.

(ii) Show that this presheaf is a sheaf.

Definition 5.5. A ringed space (X,OX) is called an affine scheme if it is isomorphic to
(SpecA,OSpecA) for some commutative ring A. A scheme is a ringed space that is locally
an affine scheme.1

5.1 Descent

The following exercises guide you through one solution to Exercise (5.11) (ii).

Exercise 5.6. Let F be a presheaf on a basis U for a topological space X.

(i) Show that F satisfies SH1 if and only if

F (U)→
∏
i∈I

F (Ui) (5.1)

is injective whenever U =
⋃
Ui is an open cover of U in U .

(ii) Show that a particular instance of (5.1) is injective if and only if there is a subcollection
J ⊂ I such that

⋃
i∈J Ui = U and

F (U)→
∏
i∈J

F (Ui) (5.2)

is injective.

Exercise 5.7. Assume that F is a separated presheaf (this means F satisfies SH1) on a
basis U for a topological space X that is closed under intersections.

(i) Show that F satisfies SH2 if and only if

F (U)→
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ∩ Uj) (5.3)

is exact2 whenever U =
⋃
Ui is an open cover of U in U . (Note: Make sure you

understand what all of the maps are in this diagram!)

1Warning: In older literature, what is today called a ‘scheme’ was called a ‘prescheme’. The word ‘scheme’
was reserved for what is today called a ‘separated scheme’.

2A diagram of sets A
f
// B

g
//

h
// C is said to be exact if f is injective and the image of f is exactly

the collection of all b ∈ B such that g(b) = h(b). This condition is equivalent to exactness of the sequence

0→ A
f−→ B

g−h−−−→ C when the objects are abelian groups.
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(ii) Show that a particular instance of (∗) is exact if and only if there is a subcollection
J ⊂ I such that

⋃
i∈J Ui = U and the sequence

F (U)→
∏
i∈J

F (Ui) ⇒
∏
i,j∈J

F (Ui ∩ Uj) (5.4)

is exact.

Exercise 5.8. Combine the previous two exercises to show that a presheaf on a basis U
of quasicompact open subsets that is closed under intersection is a sheaf if and only if the
sequences (∗) are exact whenever U =

⋃
Ui is a finite cover in U .

Exercise 5.9. Generalize the last two exercises to apply to all bases, not just those closed under intersec-
tions.

Exercise 5.10. Let A be a commutative ring. Show that a sequence of A-modules

M ′ →M →M ′′

is exact if and only if the sequence of localized modules3

M ′f →Mf →M ′′f

is exact.

Exercise 5.11. Prove that OSpecA is a sheaf on the basis U of principal open affine subsets
of SpecA:

(i) Reduce the problem to showing that the sequence

A //
∏
i∈I A[f−1

i ] //
//
∏
i,j∈I A[f−1

i , f−1
j ] (5.5)

is exact whenever I is a finite subset of A such that IA = A.

Prove that exactness of this sequence is equivalent to exactness of the sequences

Af //
∏
i∈I Af [f−1

i ] //
//
∏
i,j∈I Af [f−1

i , f−1
j ] (5.6)

for all f ∈ I. (Note: Af = A[f−1]. The mixed notation is just to make the equation look
prettier.) (Warning: Be careful about commuting localization with products.)

Prove that the sequences (5.6) are exact. (Hint: You can do this by explicitly splitting the
sequence or by using a chain homotopy. There is a way to do this that doesn’t require any
messy algebra, using Exercises 5.6 and 5.7.)

3Recall that Mf = A[f−1] ⊗A M is the module over A[f−1] induced by M . It can be constructed
explicitly as the set of symbols f−nx with x ∈M , subject to the relation f−nx = f−my if there is some k
such that fk(fmx− fmy). It can also be constructed as the direct limit lim−→n∈N f−nM , where f−nM = M

for all M and the map f−nM → f−mM for n < m, sends f−nx ∈ f−nM to f−mfm−nx ∈ f−mM .
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5.2 Partitions of unity

This section guides you through another solution to Exercise (5.11) (ii) that shares some
spiritual similarity with the partition of unity arguments that appear in differential geometry.

Exercise 5.12. Reduce the problem to showing that the sequence

0→ A→
∏
i∈I

A[f−1
i ]→

∏
i,j∈I

A[f−1
i , f−1

j ] (5.7)

is exact for whenever I ⊂ A and IA = A. Make sure you know what the maps in this
sequence are before you try to prove anything!

Exercise 5.13. (i) If x ∈ A and x restricts to zero in A[f−1
i ] then fni x = 0 for some

n ≥ 0.

(ii) If (f1, . . . , fk) = A then (fn1
1 , . . . , fnk

k ) = A as well.

Exercise 5.14. (i) Prove the exactness of (5.7) at A.

(ii) Prove the exactness of (5.7) at
∏
i∈I A[f−1

i ].
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Chapter 3

First properties of schemes

6 Examples

Reading 6.1. [Vak14, §§4.4]

6.1 Open subschemes

Exercise 6.2. Show that an open subset of a scheme is equipped with the structure of a
scheme in a natural way. (Hint: Restriction of a sheaf is a sheaf.)

6.2 Affine space

Definition 6.3 (Affine space). The scheme Spec Z[x1, . . . , xn] is denoted An and is called
n-dimensional affine space.

6.3 Gluing two affine schemes

Exercise 6.4. Suppose that X and Y are two schemes and U ⊂ X and V ⊂ Y are open
subsets such that U ' V and under this isomorphism OU ' OV . Construct a scheme Z
whose underlying topological space is the union of X with Y along U ' V and for which
OZ
∣∣
X

= OX and OZ
∣∣
Y

= OY . (The statement of this exercise is deliberately vague in
several ways. Part of your job is to make it precise.)

Exercise 6.5. Using the notation of the last exercise, let k be a field (you may find it easier
to assume k is algebraically closed) and let X = A1

k = Spec k[x] and let Y = A1
k = Spec k[y].

There is an open subset U = D(x) ⊂ X and V = D(y) ⊂ Y .

(i) Construct two distinct homeomorphisms U ' V and corresponding identifications
OU ' OV . (Hint: One should correspond to x = y and one should correspond to
x = y−1.)

(ii) Apply the last exercise to obtain a scheme Z for each of these two isomorphisms.
Describe these spaces qualitatively and explain why they are different. (Hint: Consider
a point ξ ∈ X. Move ξ so that x(ξ) approaches 0. Move ξ so that x(ξ) approaches
∞.)

31
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6.4 Gluing more than two affine schemes

Exercise 6.6. How should this construction be modified when gluing 3 or more affine
schemes along open subsets?

6.5 Projective space

In topology, CPn is the set of 1-dimensional subspaces of Cn+1. It is topologized as the
quotient of Cn+1 r {0} by C∗. For each i = 0, . . . , n, let Vi ⊂ Cn+1 be the span of the n
coordinate vectors excluding ei. Then ei + Vi consists of all vectors whose i-th coordinate
is 1. The image of ei + Vi is an open subset Ui of CPn and this gives a system of charts for
CPn as a complex manifold.

We can’t imitate all of this algebraically, at least not yet. However, we can imitate the
charts.

For each i, let Ui = SpecAi where

Ai = Z[x0/i, . . . , xn/i]/(xi/i − 1).

The choice of notation makes the gluing that is about to happen easier. Later on, we will
see that there is a way to think about xk/i as xk/xi in some bigger ring, but introducing
this notation now would probably be misleading. Let

Aij = A[x−1
j/i].

Exercise 6.7. Verify that there is an identification Aij ' Aji sending

xk/i 7→ xk/jx
−1
i/j .

Let
Aijk = A[x−1

j/i, x
−1
k/i].

Note that Aijk = Aikj and that the exercise above gives induces an isomorphism Aijk → Ajik
for any i, j, k.

Exercise 6.8. The previous exercise gives two identifications between Aijk and Akji:

Aijk → Ajik = Ajki → Akji

Aijk = Aikj → Akij = Akji

Show that these two maps are the same.

Exercise 6.9. Use these identifications to glue the Ui = SpecAi together into a scheme,
Pn.

Projective space is extremely important because almost every scheme one encounters in
practice can be constructed as the intersection of an open subscheme and a closed subscheme
of projective space.

A The homogeneous spectrum and projective schemes

Reading A.1. [Vak14, §4.5], [Har77, §I.2; §II.2, pp. 76–77]
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A.1 Some geometric intuition
The exercises in this section are not required (and may not even be well-posed). The idea here is to get an
idea of where the construction in the next section comes from. We will see how to make all of these ideas
precise later when we talk about algebraic groups.

We limit attention to schemes over C. Recall that CPn is the quotient of Cn+1 r {0} by C∗.
Note that C∗ acts on Cn+1 by scaling the coordinates. How does this translate geometrically? If f is

a function on Cn+1 and λ ∈ C∗ then we get a (right) action of C∗ on f by defining f.λ(x) = f(λx). Note
that this definition is a bit sloppy because a function on a scheme is not always determined by its values.
In this case this turns out to be okay, since functions are determined by their values on Spec C[x0, . . . , xn],
but we will have to wait until later to see how to make this construction make sense more generally.

In other words, C∗ acts on the ring C[x0, . . . , xn]. Now, the actions C∗ are well-understood. Any time
C∗ acts on a complex vector space V , we can decompose that vector space as a direct sum

V =
∑
d∈Z

Vd

where λ ∈ C∗ acts on v ∈ Vd by λ.v = λdv.

Exercise A.2.Correction! Thanks to
Jon Lamar for noticing

that the previous
version of this exercise

was incorrect.

Prove that every algebraic representation of C∗ can be written as a direct sum as above.
(Hint: Use the fact that commuting diagonalizable endomorphisms of a vector space can be diagonalized
simultaneously and that C∗ contains lots of roots of unity. Then show the only linear algebraic actions of
C∗ on C are by λ.x = λdx for some d ∈ Z.)

Thus there is a grading on C[x0, . . . , xn].

Exercise A.3. Verify that this is the usual grading by degree.

Thus, at least morally speaking, graded C-algebras correspond to affine schemes over C with an action
of C∗.

We want to take the quotient of Cn+1 by this action. However, this has no hope of being a reasonable
geometric space because it wants to have a dense point with residue field C corresponding to the orbit {0}.
We only have a chance of getting something reasonable if we delete the fixed point.

So we hope that P = (Cn+1 r {0})/C∗ will turn out to be a scheme. Let’s try to find a reasonable
open cover. The open subsets of P correspond to C∗-invariant open subsets of Cn+1 r {0}.

Exercise A.4. Show that D(f) ⊂ Cn+1 is C∗-invariant if and only if f is a homogeneous polynomial or
zero.

We write D+(f) ⊂ P for the open subset corresponding to D(f) ⊂ Cn+1 r {0}.
Now we figure out what OP (D+(f)) should be. A function on D+(f) should be a function on D(f)

that is invariant under the action of C∗. That is, we should have f.λ = f , which means precisely that f has
graded degree zero. (Recall that f has graded degree d if f.λ = λdf .) The functions of with this property
are exactly the ones of graded degree zero. Thus we get

OP (D+(f)) = C[x0, . . . , xn, f
−1]0.

How much of this can be generalized? What if we had any affine C-scheme at all with an action of C∗.
This corresponds to a graded ring S. We could imitate the above procedure, but we have to delete the locus
in SpecS that is fixed by C∗.

Exercise A.5. Show that the fixed locus of C∗ acting on SpecS is V (S 6=0).

So the first step is to delete V (S 6=0). We then attempt to take a quotient of D(S 6=0) by C∗. Again,
the C∗-invariant open subsets are of the form D(f) where f is homogeneous, and these correspond to open
subsets D+(f) ⊂ P = D(S6=0)/C∗. We define OP (D+(f)) = OSpecS(D(f))0.

A.2 The homogeneous spectrum of a graded ring

Definition A.6. A graded ring is a commutative ring S and a decomposition of the un-
derlying abelian group of S is a direct sum: S =

∑
n∈Z Sn such that SnSm ⊂ Sn+m for all

n,m ∈ Z. We write S<0 =
∑
n<0 Sn, S>0 =

∑
n>0 Sn, and S6=0 =

∑
n 6=0 Sn.1

1In most treatments, S is assumed to be non-negatively graded, i.e., S<0 = 0.
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An element of S is called homogeneous if it is contained in some Sn, in which case it is
said to have degree n. An ideal of S is called homogeneous if it is generated by homogeneous
elements. A homomorphism of Z-graded rings f : S → T is a homomorphism of rings such
that f(Sn) ⊂ Tn for all n ∈ Z.

The radical ideal generated by S6=0 is called the irrelevant ideal and is denoted S+.Correction! The
irrelevant ideal is not

merely the ideal
generated by S6=0: it is

the radical ideal
generated by S6=0.

Exercise A.7. Show that if S contains a unit of non-zero degree then the irrelevant ideal
is S itself.

Exercise A.8. (i) Show that an ideal I ⊂ S is homogeneous if and only if I =
∑

(I∩Sn).

(ii) [Vak14, Exercise 4.5.C (a)] Show that I ⊂ S is a graded ideal if and only if it is the
kernel of a homomorphism of graded rings.

(iii) [Vak14, Exercise 4.5.C (b)] Show that sums, products, intersections, and radicals of
homogeneous ideals are homogeneous ideals.

(iv) [Vak14, Exercise 4.5.C (c)] Show that a homogeneous ideal is prime if and only if
ab ∈ I implies a ∈ I or b ∈ I for homogeneous elements of S.

Definition A.9 (The homogeneous spectrum). Let S be a graded ring. Define ProjS to
be the set of homogeneous prime ideals in S that do not contain the irrelevant ideal. This
is called the homogeneous spectrum of S. For any homogeneous ideal J ⊂ S we define
V+(J) ⊂ ProjS to be the set of homogeneous primes of S containing J and not containing
the irrelevant ideal. We define D+(J) to be the complement of V+(J) in ProjS.

Exercise A.10 (The universal property of an open subset of the homogeneous spectrum). (i)
Suppose ϕ : S → T is a homomorphism of graded rings such that

√
ϕ(S+)T = T+.

Correction! Thanks to
Jon Lamar for noticing

two errors here: the
condition ϕ−1T+ = S+

in the first part and
the condition√

ϕ(J)T = T+ in the
second part were

incorrect.

Show that ϕ induces a continuous function ProjT → ProjS sending a homogeneous
ideal p of T to ϕ−1p.

(ii) Suppose that u : ProjT → ProjS is induced from a graded homomorphism ϕ : S → T
as in the first part. Show that u factors through D+(J) if and only if

√
ϕ(J)T ⊃ T+.

Exercise A.11. Suppose that S+ = S. Show that ProjS = SpecS0 as a topological space.
(Hint: If this is difficult, use the additional assumption that S contains an invertible element
of non-zero degree; this is the only case that we will use. It is possible to reduce the general
case to this one. The special case is essentially [Vak14, Exercise 4.5.E] or [Sta15, Tag 00JO].)

We give ProjS the sheaf of rings defined on the basis of open sets of the form D+(f)
where f has nonzero degree byCorrection: We only

make the definition for
f of nonzero degree to

make the following
exercise easier.

OProjS(D+(f)) = S[f−1]0.

Exercise A.12. (i) Show that the open sets D+(f), for f ∈ S+, form a basis for the
topology of ProjS.

(ii) Verify that OProjS is a presheaf.

(iii) Verify that OProjS is a sheaf on the basis U = {D+(f)}. (Hint: Save yourself work
and reduce to Exercise 5.11.)

(iv) ExtendOProjS to a sheaf on ProjS in the only possible way. Show that (ProjS,OProjS)
is a scheme.
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7 Absolute properties of schemes

Most useful properties of schemes are relative, meaning they may be applied to families of
schemes. We can’t talk about relative properties yet since we haven’t yet defined morphisms
of schemes, so we’ll only introduce a limited array of definitions.

Reading 7.1. [Vak14, §§3.3, 3.6], [Har77, §II.3]

7.1 Connectedness

Definition 7.2. A scheme X is connected if its underlying topological space is connected.

Exercise 7.3.Worth being aware of,
not necessarily

important to write up.
(i) Show that a scheme X is disconnected if and only if Γ(X,OX) contains an idempotent

element other than 0 and 1. (Hint: Let e be an idempotent. Then D(e) and D(1− e)
are disjoint open subsets whose union is X.)

(ii) Show that Spec(A×B) = Spec(A)q Spec(B).

Exercise 7.4.An exercise for the
logically oriented. The
first 4 parts should be

easy. The last is pretty
hard.

Let Ai be a collection of commutative rings, indexed by i in a set I.

(i) Construct a map
∐

SpecAi → Spec
∏
Ai.

(ii) Show that this map is an isomorphism if I is a finite set. (Hint: Use an earlier exercise.)

(iii) Show that this map is always injective.

(iv) Show that this is not an isomorphism if I is infinite. (Hint: Affine schemes are quasicompact.)

(v) Construct an element of Spec
∏
Ai that is not in the image of

∐
SpecAi. (Hint: I don’t suggest

attempting this problem unless you know what an ultrafilter is.)

7.2 Quasicompactness

Definition 7.5. A scheme X is said to be quasicompact if every open cover of X has a
finite subcover.

Exercise 7.6.This is a repeat of
Exercise 3.14.

Show that every affine scheme is quasicompact.

Exercise 7.7.Not very important,
should be easy.

1. Construct an example of a scheme that is not quasicompact.

2. Construct an example of a connected scheme that is not quasicompact.

7.3 Quasiseparatedness

Definition 7.8. A scheme X is said to be quasiseparated if the intersection of any two
quasicompact open subsets of X is quasicompact.

Exercise 7.9. Give an example of a scheme that is not quasiseparated.
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7.4 Nilpotents

Definition 7.10. Recall that a commutative ring is said to be reduced if it contains no
nonzero nilpotent elements. A scheme X is said to be reduced if OX(U) is a reduced ring
for all open subsets U of X.

Exercise 7.11. Let X be any scheme. Construct a reduced scheme Xred with the same
underlying topological space as X by replacing OX(U) by its associated reduced ring.

Definition 7.12. A scheme is said to be integral if it is reduced and irreducible.

7.5 Irreducibility

Definition 7.13. A scheme X is reducible if its underlying topological space is the union
of two closed subsets, neither of which is equal to X. Otherwise it is irreducible.

Exercise 7.14.Important, but should
be easy.

Show a scheme X is irreducible if and only if every pair of open subsets of
X have non-empty intersection.

Exercise 7.15.Important, but should
be easy.

Show that an affine scheme X = SpecA is reducible if and only if A contains
a non-nilpotent divisor of zero.

Exercise 7.16 ([Har77, Proposition II.3.1]).This is a good one to
do. It’s not extremely

important, but it
requires putting

together a few different
ideas without being

too difficult.

Prove that a reduced scheme X is irreducible
if and only if OX(U) is an integral domain for all open U ⊂ X.

7.6 Noetherian and locally noetherian schemes

Definition 7.17. A scheme that has an open cover by spectra of noetherian rings is called
locally noetherian. If the cover can be chosen to be finite then the scheme is said to be
noetherian.

Exercise 7.18.A useful fact to know.
The first part should
be easy. The second
part uses a trick you

should become familiar
with if you aren’t

already.

(i) Show noetherian is equivalent to the conjunction of locally noetherian and quasi-
compact.

(ii) Show that SpecA is locally noetherian if and only if A is a noetherian ring. (Hint:
Two ideals that are locally the same are the same.)

Exercise 7.19.This exercise and the
next are essentially the

same. Think about
both, but don’t write
up more than one of

them.

If X is a noetherian scheme then every open subset of X is quasi-compact.
(In fact, every subset whatsoever is quasicompact, and the proof isn’t any harder.)

Exercise 7.20. Show that the underlying topological space of a noetherian scheme is
noetherian: any increasing union of open subsets stabilizes.

Exercise 7.21 (Irreducible components).Important fact! Prove that a noetherian scheme is the union of
finitely many irreducible closed subsets. Conclude that a noetherian ring has finitely many
minimal prime ideals.

Exercise 7.22 (Noetherian induction (cf. [Har77, Exercise 3.16])). Let X be a noetherian
scheme and S a collection of closed subsets of X. Assume that whenever Z ⊂ X is closed
and S contains all proper closed subsets of Z, the set Z also appears in S. Prove that X
appears in S.

Exercise 7.23. Find equations defining the union of the 3 coordinate axes in A3.
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7.7 Generic points

Exercise 7.24.Important fact. The
argument is fairly

straightforward
topology, hence not too
important to write up.

Each irreducible closed subset Z of a scheme X has a unique point that is
dense in Z. This is called the generic point of Z.

7.8 Specialization and generization

Definition 7.25. Suppose x and y are points of a scheme X. If y lies in the closure of x
then we say x specializes to y and y generizes to x. We often write x; y for this.

Exercise 7.26.Important fact, not
important to write up.

(i) Show that closed subsets are stable under specialization and open subsets are stable
under generization.

(ii) Give an example of a subset of a scheme that is stable under generization but not
open and an example of a subset that is stable under specialization but not closed.

8 Sheaves II

Reading 8.1. [Vak14, §§2.3, 2.6]

8.1 Pushforward

Definition 8.2 (Pushforward of presheaves). Let f : X → Y be a continuous function. If
F is a presheaf on X then f∗F is the presheaf on Y whose value on and open subset U ⊂ Y
is f∗F (U) = F (f−1U).

Exercise 8.3 (Pushforward of sheaves). The pushforward of a sheaf is a sheaf.

Exercise 8.4 (Pushforward to a point). Let F be a sheaf on a topological space X and let
π : X → (point) be the projection to a point. Show that π∗F = Γ(X,F ) when sheaves on
a point are regarded as sets.

8.2 Sheaf of sections

Definition 8.5. Let π : Y → X be a continuous function. A section of π over a map
f : Z → X is a map s : Z → Y such that πs = f . In particular, a section over X is a section
over the identity map id : X → X. We write Γ(Z, Y ) for the set of sections of π : Y → X
over f : Z → X (leaving the names of the maps implicit).

We define a presheaf Y sh on X by Y sh(U) = Γ(U, Y ) for all open U ⊂ X.

Exercise 8.6 (The sheaf of sections). Show that Y sh, as defined above, is a sheaf.

8.3 Espace étalé

Definition 8.7. A function π : E → X is called a local homeomorphism or étale if there is
a cover of E by open subsets U such that π

∣∣
U

: U → X is an open embedding.2

2The word étale is also applied to certain morphisms of schemes, but the definition is different.
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A morphism of étale spaces π : E → X and π′ : E′ → X is a continuous map f : E → E′

such that π′f = π. We write ét(X) for the category of all étale spaces over X.3

Exercise 8.8. Show that any map between étale spaces over X is a local homeomorphism.

If F is a presheaf over X, construct a diagram Open(X)/F whose objects are pairs
(U, ξ) where U ∈ Open(X) and ξ ∈ F (U). There is exactly one arrow (U, ξ) → (V, η)
whenever U ⊂ V and η

∣∣
U

= ξ. Define

F ét = lim−→
(U,ξ)∈Open(X)/F

U.

There is a projection π : F ét → X by the universal property of the direct limit, setting
U → X to be the inclusion on the (U, ξ) entry.

Exercise 8.9 (The espace étalé). Show that π : F ét → X is a local homeomorphism.
(Hint: Show that the map U → F ét associated to ξ ∈ F (U) is an open embedding using
Exercise 8.8 and the fact that such a map is a section.)

Exercise 8.10 (Sheaves and étale spaces are equivalent). Show that the constructions E 7→
Esh and F 7→ F ét are inverse equivalences between ét(X) and Sh(X) for any topological
space X.

8.4 Associated sheaf

Definition 8.11. If F is any presheaf then (F ét)sh is a sheaf, called the associated sheaf of
F . We write F sh = (F ét)sh for brevity.

Exercise 8.12 (Universal property of the associated sheaf).Very important.
Writing it up can get
technical, so it might

be more valuable to
think it through than

to write your proof
down carefully.

Let F be a presheaf on a
topological space X.

(i) Construct a map F → F sh and show that it is universal among maps from F to
sheaves.

(ii) Prove that for any sheaf G,

HomPsh(X)(F,G) ' HomSh(X)(F
sh, G)

in a natural way. (This is really a restatement of the first part.)

8.5 Pullback of sheaves

Definition 8.13 (Fiber product). If f : X ′ → X and p : E → X are continuous functions,
a fiber product is a universal topological space E′ fitting into a commutative diagram4

E′
f ′
//

p′

��

E

��

X ′ // X.

We often write E′ = f−1E and call E′ the pullback of E.

3This will cause a technical, but not moral or spiritual, conflict of notation when we study étale morphisms
of schemes later.

4In fact this definition applies in any category.
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Exercise 8.14 (Existence of fiber product in topological spaces). Show that a fiber product
can be constructed in topological as the set of all pairs (x, e) ∈ X ′×E such that f(x) = p(e),
topologized as a subspace of the product.

Exercise 8.15 (Pullback of local homeomorphisms). In the notation of Definition 8.13,
suppose that p : E → X is a local homeomorphism. Show that p′ : E′ → X ′ is also a local
homeomorphism.

Definition 8.16 (Pullback of sheaves). If f : X → Y is a continuous map and G is a sheaf
on Y then define

f−1G = f−1(Gét)sh

Exercise 8.17. Let f : X → Y be a continuous map of topological spaces, let F be a sheaf
on X, and let G be a sheaf on Y . Construct a natural bijection

HomSh(X)(f
−1G,F ) ' HomSh(Y )(G, f∗F ).

8.6 Stalks

Definition 8.18. If F is a presheaf over X, write π : F ét → X for the espace étalé of F .
The fiber π−1x of F ét over x ∈ X is called the stalk of F at X and is often denoted Fx.

Exercise 8.19. If F is a presheaf on X, construct a natural isomorphism

Fx = lim−→
U∈Open(X)

x∈U

F (U).

(Hint: One proof of this uses the universal property of f−1, proved in Section 8.5.)

Exercise 8.20. Prove that the stalks of the structure sheaf of a scheme are local rings.
(Hint: Reduce immediately to the case of an affine scheme.)

Exercise 8.21. Let η be a point of a topological space X and let ξ be a point of X in
the closure of η. Fix a set S and let F be the skyscraper sheaf at η associated to S. (If
j : η → X is the inclusion then F = j∗S.) Compute the stalk of F at ξ. (If i : ξ → X is the
inclusion then you are computing i−1j∗S.)
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Chapter 4

The category of schemes

9 Morphisms of schemes

Reading 9.1. [Vak14, §§6.1–6.3,7.1,8.1]

9.1 Morphisms of ringed spaces

Definition 9.2 (Morphisms of ringed spaces). A morphism of ringed spaces from (X,OX)
to (Y,OY ) is a continuous function ϕ : X → Y and a homomorphism of sheaves of rings
ϕ∗ : OY → ϕ∗OX .1

Exercise 9.3. Show that we could equivalently have specified a morphism of ringed spaces
as a continuous function ϕ : X → Y and a homomorphism of sheaves of rings ϕ∗ : ϕ−1OY →
OX .

Exercise 9.4. (i) Show that a homomorphism of commutative rings ϕ : B → A induces
a morphism of ringed spaces f : SpecA→ SpecB.

(ii) Show that f−1D(g) = D(ϕ(g)) for any g ∈ A.

Exercise 9.5.Not difficult, but not
important either.

Could be good practice
with sheaves if you are

new to sheaves.

Construct a morphism of ringed spaces SpecB → SpecA that is does not
come from a morphism of rings A→ B.

9.2 Locally ringed spaces

Suppose that (X,OX) is a ringed space and f ∈ Γ(U,OX) for some open U ⊂ X. Let D(f)
be the largest open subset U of X such that f

∣∣
U

has a multiplicative inverse.

Exercise 9.6.Important to know,
less important to do.

Use the sheaf conditions to prove that D(f) exists. (One approach: Let

F (U) = {g ∈ OX(U)
∣∣ gf = 1}. Show that F is a sheaf and that F (U) is either empty or a

1-element set for all U . Conclude that there is an open V ⊂ X such that F (U) = 1 if and
only if V ⊂ U .)

Definition 9.7 (Locally ringed space [AGV 3, Exercise IV.13.9]). A locally ringed space is
a ringed space (X,OX) such that if f1, . . . , fn ∈ Γ(U,OX) and (f1, . . . , fn) = Γ(U,OX) then
D(f1) ∪ · · · ∪D(fn) = U .

1Warning: Other authors often use ϕ] instead of ϕ∗ here.

41
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Exercise 9.8. (i) Prove that any ringed space with an open cover by locally ringed spaces
is a locally ringed space.

(ii) Prove that affine schemes are locally ringed spaces.

(iii) Conclude that all schemes are locally ringed spaces.

Exercise 9.9. (i)This is important to
know for schemes

(Exercise 8.20), much
less important to know

for locally ringed
spaces. For schemes,

the verification should
be easy.

Prove that x ∈ U is in D(f) if and only if the germ of f at x is
invertible.

(ii)This is the usual
definition of a locally

ringed space, so this is
important to know for

the sake of
communication. It’s

not an important
exercise.

Prove that a ringed space (X,OX) is a locally ringed space if and only if all of the
stalks of OX are local rings. (Hint: A commutative ring is local if and only if its
non-unit elements form an ideal.)

If f ∈ Γ(X,OX) then we can regard OX as a sheaf of ‘functions’ on X: Restrict f to
the stalk OX,ξ. Let mξ be the maximal ideal of OX,ξ. Then the residue of f in the residue
field k(ξ) = OX,ξ/mξ is the value of f at ξ.

Exercise 9.10. Show that this definition coincides with the more familiar notion of value
for ξ ∈ Cn ⊂ Spec C[x1, . . . , xn].

Exercise 9.11. Show that when f(ξ) is interpreted as the value of ξ in the residue field of
ξ that D(f) is the set of points ξ where f(ξ) 6= 0.

9.3 Morphisms of locally ringed spaces

Definition 9.12 (Morphisms of schemes). If ϕ : X → Y is a morphism of ringed spaces
and both X and Y are locally ringed spaces and ϕ−1(DU (f)) = Dϕ−1U (ϕ∗f) for any open
U ⊂ Y and any f ∈ Γ(U,OY ) then we say ϕ is a morphism of locally ringed spaces.

A morphism of schemes ϕ : X → Y is a morphism of the underlying locally ringed
spaces.

Exercise 9.13. Suppose that f : X → Y is a morphism of ringed spaces.

(i) Suppose there is a cover of Y by open subsets U such that f−1U → U is a morphism
of locally ringed spaces. Show that f is a morphism of locally ringed spaces.

(ii) Suppose that there is a cover of X by open subsets U such that U → Y is a morphism
of locally ringed spaces. Show that f is a morphism of locally ringed spaces.

In other words, if X and Y are schemes then a morphism of ringed spaces f : X → Y
is a morphism of schemes if for each point x ∈ X, there is an open affine neighborhood
U = SpecA of X and an open affine neighborhood V = SpecB of f(x) such that f(U) ⊂ V
and the map SpecA→ SpecB is induced from a homomorphism B → A.

Exercise 9.14 (The usual definition of morphisms of locally ringed spaces [AGV 3, Ex-
ercise IV.13.9 c)]). With notation as in Definition 9.12, show ϕ is a morphism of locally
ringed spaces if and only if for every point x of X, the map ϕ∗ : OY,ϕ(x) → OX,x is a local
homomorphism of local rings. (Recall that this means ϕ∗mϕ(x) ⊂ mx.)
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9.4 Morphisms to affine schemes

Theorem 9.15. If (X,OX) is a locally ringed space then Hom(X,SpecA) = Hom(A,Γ(X,OX))
in a natural way.

Exercise 9.16. If A and B are commutative rings then

HomSch(SpecB, SpecA) = HomComRng(A,B).

Exercise 9.17. (i) Show that for any affine scheme, Hom(SpecA,A1) = A in a natural
way.

(ii) Show that for any scheme, Hom(X,A1) = Γ(X,OX).

10 Properties of morphisms

10.1 Nilpotents

Exercise 10.1. Let A = A1 and let B = Spec C[ε]/(ε2). Show B has only one point but
that there are non-zero functions that take the value 0 at this point.

10.2 Open embeddings

Exercise 10.2 (Open subschemes). If X is a scheme U ⊂ X is an open subset, define OU
to be the restriction of OX to U . Show that U is a scheme.

Definition 10.3. A morphism of schemes U → X is said to be an open embedding if it can
be factored as U → V → X where U → V is an isomorphism and V → X is the inclusion
of an open subscheme.

10.3 Affine morphisms

Definition 10.4 (Affine morphism). A morphism of schemes f : X → Y is said to be affine
if, whenever U ⊂ Y is an affine open subset, f−1U ⊂ X is an affine open subset.

Exercise 10.5. Show that any morphism between affine schemes is affine.

10.4 Closed embeddings

Definition 10.6. A morphism of schemes f : Z → X is called a closed embedding if it is
affine and for any affine open subset U ⊂ X with U = SpecA and f−1U = SpecB, the map
A→ B is a surjection.

Exercise 10.7. Show that f : Z → X is a closed embedding if and only if it is the inclusion
of a closed subset and the map f∗ : OX → f∗OZ is surjective.
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10.5 Locally closed embeddings

Definition 10.8. A locally closed subscheme is a closed subscheme of an open subscheme.
A morphism of schemes f : Z → X is called a locally closed embedding if it can be factored
as a closed embedding followed by an open embedding.

Exercise 10.9.It’s valuable to know
pathologies like this

can exist, less
important to have

actually seen them.

(i) Let X = A∞ = Spec C[x1, x2, . . .] and let U ⊂ X be the complement of the origin
(0, 0, . . .). (In other words U = D(x1, x2, . . .).) Show that there is a closed subscheme
Y ⊂ U such that Y ∩D(xm) is

Y ∩D(xm) = Spec k[x1, x2, . . . , x
−1
m ]/(xm1 , x

m
2 , . . . , x

m
m−1, xm+1, xm+2, . . .].

(ii) Show that the smallest closed subscheme of X containing Y is X itself.

(iii) Conclude that Y is not an open subscheme of a closed subscheme of X.

Exercise 10.10.This is a surprisingly
important fact.

Show that if X is a noetherian scheme then every locally closed subscheme
of X is an open subscheme of a closed subscheme of X.

10.6 Relative schemes

We frequently want to distinguish between coefficients in a ring and variables. For example,
if you define the coordinate ring of a curve over C as C[x, y]/(f(x, y)), don’t want to think
of automorphisms of C as automorphisms of the curve. We accomplish this algebraically by
introducing the category of C-algebras.

Definition 10.11. Let A be a commutative ring. An A-algebra is a pair (B,ϕ) where
B is a commutative ring and ϕ : A → B is a homomorphism of commutative rings. A
homomorphism of A-algebras (B,ϕ) → (C,ψ) is a homomorphism of commutative rings
f : B → C such that f ◦ ϕ = ψ.

In other words, homomorphisms of A-algebras are homomorphisms of commutative rings
that hold the coefficient ring constant. If we translate this geometrically, we obtain the
notion of a relative scheme:

Definition 10.12. Let A be a commutative ring. An A-scheme is a pair (X,π) where
π : X → SpecA is a morphism of schemes. A morphism of A-schemes (X,π) → (Y, τ) is a
morphism of schemes f : X → Y such that τ ◦ f = π.

Exercise 10.13.Should be easy. Do it
if it’s not obvious.

Verify that A-algebras and affine A-schemes are contravariantly equivalent
categories. (You’ll have to define an affine A-scheme. There are two obvious definitions,
both equivalent.)

We can generalize this definition and think about schemes that are constructed using
coefficients coming from the structure sheaf of another scheme:

Definition 10.14. Let S be a scheme. An S-scheme is a pair (X,π) where π : X → S is a
morphism of schemes. A morphism of S-schemes (X,π)→ (Y, τ) is a morphism of schemes
f : X → Y such that τ ◦ f = π.

Usually when we are working with S-schemes we refer to an S-scheme (X,π) as X and
sometimes don’t even introduce a letter for π. This shouldn’t be a source of confusion, since
π is usually clear from context.
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10.7 Examples

Exercise 10.15. Show that the disjoint union of two schemes is a scheme in a natural way
(you will have to specify the structure sheaf yourself). Show that your construction has the
universal property of a coproduct: Hom(X q Y, Z) = Hom(X,Z)×Hom(Y,Z) for all Z.

Exercise 10.16.Recommended
exercise! This is a

better organized
version of a problem

discussed in class.

Let X be a scheme (in fact, X can be a locally ringed space). Construct
a bijection between maps X → P1 and the set of quadruples (V0, V1, x0, x1) such that

(i) Vi ⊂ X are open subsets of X with V0 ∪ V1 = X,

(ii) xi ∈ Γ(Vi,OX), and

(iii) x0

∣∣
V0∩V1

x1

∣∣
V0∩V1

= 1.

11 The functor of points

Reading 11.1. [Mum99, §II.6], [Vak14, §§6.6.1–6.6.2, 9.1.6–9.1.7]

11.1 The problem with the product

The world would be unjust if we could not say that

A1 ×A1 = A2.

Exercise 11.2. (i) Show that
|A1| × |A1| 6= |A2|,

where |X| denotes the underlying topological space of a scheme X. (Hint: Find a
point of A2 that does not correspond to an ordered pair of points. Feel free to work
over a field, or even an algebraically closed field, where the important phenomenon
will already be visible.)

(ii) Show that A2 has the correct universal property of a product in the category of
schemes.2 (Hint: A map from a scheme X to SpecA is a homomorphism of commuta-
tive rings A→ Γ(X,OX). Use the universal property of a polynomial ring or a tensor
product.)

This tells us that the universal property is a better way of identify products than by
looking at the underlying set of points.

11.2 About underlying sets

Reading 11.3. [Mum99, pp. 112–113]

Many mathematical objects of interest have underlying sets. Algebraic objects like rings
and groups are defined by adding an algebraic structure to an underlying set. A topological
space is an underlying set and a collection of subsets of that set. A manifold is a topological
space with additional structure, and its underlying set is the underlying set of the underlying
topological space.

2This means that a map X → A2 corresponds to a pair of maps X → A1.
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In each of these examples, passage to the underlying set defines a functor, sometimes
called a forgetful functor :

F : C → Sets

In fact, all of these functors are representable. This means that there is some object X ∈ C
such that F ' hX , where hX(Y ) = HomC (X,Y ).

Exercise 11.4.Important general
knowledge, but not

particularly important
for this class.

Find objects representing the forgetful functors for groups, rings, topolog-
ical spaces. (Hint: Free object with one generator.)

All of the forgetful functors described above are faithful. This means that the map

HomC (X,Y )→ HomSets(FX,FY ) (∗)

is injective. In other words, you can tell if two morphisms in C are the same by looking at
how they behave on the underlying sets.

Not every category C has an ‘underlying set’ functor to the category of sets, but (essen-
tially) every category does have a faithful functor to the category of sets:

Exercise 11.5.Think about this, but
don’t write it up. This

exercise will be
generalized by the

Yoneda lemma later.

Let C be a category. Prove that the functor

F (Y ) =
∏
X∈C

Hom(Y,X)

is a faithful functor from C to Sets. (If you are the kind of person who likes to worry about
set-theoretic issues, assume that C is a small category so that the product exists.)

Of course, the forgetful functors we have encountered are not full. To be full means that
the map (∗) is a surjection. However, the functors above can be promoted to fully faithful
functors by recording extra structure:

Exercise 11.6.This exercise won’t
serve any further

purpose in this course,
so you shouldn’t do it.
It is important in the

construction of
cohomology theories

for algebraic
structures, though.

In the following problems, you will need to figure out what ‘compatible’
means.

(i) Show that compatible functions

HomComRing(Z[x], A)→ HomComRing(Z[x], B)

HomComRing(Z[x, y], A)→ HomComRing(Z[x, y], B)

are induced by a unique homomorphism of commutative rings A→ B. (Hint: Use the
map Z[x]→ Z[x, y] sending x to x+ y and the map sending x to xy.)

(ii) Let Fn denote the free group on n generators. Show that compatible functions

HomGrp(F1, A)→ HomGrp(F1, B)

HomGrp(F2, A)→ HomGrp(F2, B)

are induced by a unique homomorphism of groups A→ B.

It is harder to come up with a fully faithful embedding of topological spaces into a
category that is similarly set-theoretic, and harder still to do it for schemes. However, in
the next section, we will see that every category has a fully faithful functor to a category that
is essentially set-theoretic (meaning its objects are sets with structural morphisms between
them). In other words, morphisms in any category can be constructed set-theoretically.
This can be quite a coup for categories like schemes, where the definition of the category is
very elaborate.
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11.3 Yoneda’s lemma

Definition 11.7. If C is a category, a presheaf on C is a contravariant functor from C to
Sets. If X ∈ C then we write hX for the functor hX(Y ) = HomC(Y,X). If F is a presheaf
on C and F ' hX then we say F is representable by X.

Exercise 11.8 (Yoneda’s Lemma). (i) Let C be a category. Show that X 7→ hX is a

covariant functor from C to Ĉ.

(ii) Show that X 7→ hX is fully faithful. (Show in other words that HomC(X,Y ) =
HomĈ(hX , hY ) via the natural map.)

(iii) Show that for any F ∈ Ĉ, there is a unique natural bijection HomĈ(hX , F ) ' F (X)
under which ϕ : hX → F corresponds to ϕ(idX) ∈ F (X).

Yoneda’s lemma tells us that we can think of a scheme in terms of the contravariant
functor it represents. Remarkably this can often be a lot easier than thinking about the
scheme as a ringed space.
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Chapter 5

Representable functors

12 Presheaves representable by schemes

Reading 12.1. [Vak14, §§9.1.6–9.1.7]

Recall that the Yoneda lemma gave us a fully faithful functor

Sch→ Sch∧

where Sch∧ is the category of presheaves on Sch. In this section, we want to characterize
the image of this functor. In other words, we want to be able to determine which presheaves
on Sch are representable by schemes. This will give us a new way to construct schemes that
will often be easier than constructing a ringed space. In fact, this will give us an entirely
new way to think about what a scheme is.

Theorem 12.2. A presheaf on the category of schemes is representable by a scheme if and
only if

(i) it is a sheaf in the Zariski topology, and

(ii) it has an open cover by presheaves that are representable by affine schemes.

IfA is a commutative ring then hA : ComRing→ Sets sendingB to HomComRing(A,B).
If X is a scheme then hX : Sch◦ → Sets is the functor sending Y to HomSch(Y,X). Abu-
sively, we think of hA and hSpecA as being the same object. In reality, hA is a functor
defined on ComRing = Aff◦ ( Sch◦ and hSpecA is defined on all of Sch. More generally,
when X is a scheme, we sometimes think of hX as a covariant functor defined on ComRing
and we abbreviate hX(SpecA) to hX(A). We will see below that the composition of the
Yoneda embedding with restriction

Sch→ Sch∧ → Aff∧

is fully faithful, so this abuse of notation does not cause any trouble. Later on, we will even
permit ourselves to write X(A) in place of hX(A).

49
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12.1 Zariski sheaves

Let Y be a scheme. Note that Open(Y ) can be regarded as a subcategory of Sch. If F is
a presheaf on Sch then we can restrict it to Open(Y ) and get a presheaf on Y .

Definition 12.3. A presheaf F on Sch is said to be a Zariski sheaf if, for any scheme Y ,
the presheaf F

∣∣
Open(Y )

is a sheaf on Y .

The following lemma says that hX is a Zariski sheaf for any scheme X:

Lemma 12.4. Suppose X and Y are schemes. Define a presheaf F on X by F (U) =
Hom(U, Y ). Then F is a sheaf. (Hint: Use Exercise 4.9 and Exercise 4.12. It may be helpful
to think of a map of ringed spaces as a continuous map f : X → Y and a morphism of sheaves
of rings f−1OY → OX . Observe that if U ⊂ X is open then f−1OY

∣∣
U

= (f
∣∣
U

)−1OY .)

Exercise 12.5. Suppose that F is a presheaf on Sch. Show that there is a universal map F → F sh where
F sh is a Zariski sheaf. This is called the sheafification of F . (Hint: Sheafify F

∣∣
Open(X)

for each X ∈ Sch.)

12.2 Open subfunctors

Exercise 12.6.Should be simple If ϕ : F → G is a natural transformation between presheaves and G′ ⊂ G
is a subpresheaf then define F ′(U) = ϕ−1G′(U) for all U . Show that F ′ is a subpresheaf of
F . We denote F ′ = ϕ−1G′.

Exercise 12.7.This exercise is a
special case of

Exercise 12.5, although
we’ll only have use for

this one right now.
The first part is not so

important to do, so
much as to know. The
second part might be

good practice.

Suppose that F is a sheaf and Gi, i ∈ I is a family of subsheaves of F . Let
G(X) =

⋃
i∈I Gi(X). Say that ξ ∈ F (X) lies locally in G if there is an open cover X =

⋃
Uj

such that for each j, the restriction ξ
∣∣
Uj

lies in G(Uj).

(i) Show that G is not necessarily a sheaf.

(ii) Show that there is a smallest subsheaf G′ of F that contains all of the Gi. (Hint: Let
G′(X) be the set of all ξ ∈ F (X) that lie locally in G.)

(iii) Suppose that F = hX is representable. Show that G′ = F if and only if idX lies locally
in G. (Hint: hX is the only subpresheaf of itself containing idX .)

The sheaf constructed in part (ii) is called the sheaf theoretic union or the sheaf union of
the Gi.

Definition 12.8. Suppose that F is a presheaf on the category of schemes and F ′ ⊂ F
is a subpresheaf. We say that F ′ is open in F if, for any map ϕ : hX → F , the preimage
ϕ−1F ′ ⊂ hX is representable by an open subscheme of X.

A collection of open subfunctors F ′i ⊂ F is said to cover F if F is the sheaf theoretic
union of the F ′i .

Exercise 12.9.This might be a good
exercise to do. It will

force you to unpack
some of the definitions.

You don’t necessarily
have to prove all of the

equivalences.

Let F be a presheaf on Sch and F ′i ⊂ F open subpresheaves. Prove that
the following conditions are equivalent:

(i) F is the sheaf union of the F ′i .

(ii) hX is the sheaf union of the ϕ−1F ′i for all ϕ ∈ F (X) = Hom(hX , F ).

(iii) For any scheme X and any ϕ ∈ F (X) = Hom(hX , F ) let Ui ⊂ X be open subschemes
such that ϕ−1F ′i = hUi

. Then X =
⋃
Ui.
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(iv) F (k) =
⋃
i F
′
i (k) for all fields k.

Exercise 12.10.Reality check.
Shouldn’t be difficult.

Show that every scheme has an open cover by subfunctors that are rep-
resentable by affine schemes.

Lemma 12.11 ([Vak14, Exercise 9.1.I]). If F is a Zariski sheaf on schemes that has an
open cover by affine schemes then F is representable by a scheme.

12.3 The basis of affines

Since every scheme has an open cover by affine schemes, the full subcategory Aff ⊂ Sch
behaves a lot like a basis, at least with respect to Zariski sheaves:

Exercise 12.12. Show that a Zariski sheaf on Aff extends in a unique way (up to unique
isomorphism) to a Zariski sheaf on Sch.

Using this we can get another perspective on what a scheme is.

Definition 12.13. Let A be a commutative ring and let hA : ComRng → Sets be the
functor represented by A. For any subset J ⊂ A, let hD(J) be the subfunctor of hA defined
as follows:

hD(J)(B) = {ϕ : A→ B
∣∣ ϕ(J)B = B}.

A subfunctor of hA is called open if it is isomorphic to hD(J) for some subset J ⊂ A.

Warning: hD(J) usually is not representable by a commutative ring!

Exercise 12.14. Show that if hA is regarded as a contravariant functor Aff → Sets then
hD(J) is represented by the subscheme D(J) ⊂ SpecA, whence the notation.

Exercise 12.15.Not really important

(i) Show that the intersection of two open subfunctors is an open subfunctor.

(ii) Show that the union of two open subfunctors is not necessarily an open subfunctor.

Exercise 12.16. Suppose that F ⊂ G is an inclusion of Zariski sheaves and F has an
open cover by subfunctors that are also open subfunctors of G. Prove that F is an open
subfunctor of G.

Definition 12.17. A morphism F → G of presheaves on Aff is said to be an open embedding
if, for every morphism ϕ : hA → G, the preimage ϕ−1F ⊂ hA is an open subfunctor.

Definition 12.18. A morphism F → G of presheaves is said to be a cover (with respect
to schematic points) if F (k)→ G(k) is a bijection for all fields k.

Definition 12.19 (Alternate definition of a scheme). A presheaf F on Aff is called a
scheme if it is a Zariski sheaf and has a cover by open, representable subfunctors.

Exercise 12.20. Show that the two definitions of schemes (via ringed spaces and via
presheaves) yield equivalent categories.
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12.4 Fiber products

Reading 12.21. [Vak14, §§9.1–9.3]

Suppose that p : X → Z and q : Y → Z are morphisms of schemes. Define F =
hX ×hZ

hY . That is,

F (W ) = {(f, g) ∈ Hom(W,X)×Hom(W,Y )
∣∣ pf = qg ∈ Hom(W,Z)}.

Exercise 12.22. Prove that F is a Zariski sheaf.

Exercise 12.23. If X = SpecB, Y = SpecC, and Z = SpecA then F ' hSpec(B⊗AC).

Exercise 12.24. Show that F has an open cover by functors representable by affine schemes.
(Hint: For any point ξ ∈ F (k), choose open affine neighborhoods U ⊂ X, V ⊂ Y , and
W ⊂ Z containing the images of ξ, with p(U) ⊂ W and q(V ) ⊂ W . Let f : F → hX and
g : F → hY denote the projections. Show that f−1hU ∩ g−1hV is open in F and affine.)

Fibers

Suppose that p : X → S is a morphism of schemes. The fiber of p over a point ξ ∈ S is the
fiber product X ×S Spec k(ξ).

Equalizers and the diagonal

Exercise 12.25.Important! Suppose that f, g : X → Y are two morphisms of schemes. Show that
there is a universal map h : Z → X such that fh = gh. This is called the equalizer of f and
g and is sometimes denoted eq(f, g). (Hint: One way to do this is to construct a sheaf and
find an open cover by representable functors. Another way is to build the equalizer using
fiber products. It’s valuable to think about it both ways, but the second is more common
in the algebraic geometry literature.)

12.5 Examples

Exercise 12.26. For any scheme X, let Gm(X) = Γ(X,OX)∗.

(i) Show directly that Gm is a Zariski sheaf.

(ii) Show that Gm is in fact representable by an affine scheme.

13 Vector bundles

Contrary to what we’ve come to expect, the definition of a vector bundle in algebraic
geometry in exactly the same way as in differential geometry or topology. We will give this
definition, as well as two others, one aligned philosophically with thinking of schemes as
locally ringed spaces, and the other aligned with thinking in terms of the functor of points.
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13.1 Transition functions

In differential geometry, a vector bundle over a manifold S is usually defined as a projection
p : E → S along with

(i) a cover U of S along with specified isomorphisms p−1U ' U × V over U for each
U ∈ U , where V is a vector space, possibly depending on U , such that

(ii) if U1 and U2 are two open sets in U , the transition function

(U1 ∩ U2)× V1
∼−→ p−1(U1 ∩ U2)

∼−→ (U1 ∩ U2)× V2

is a family of linear maps.1

This definition makes sense when S is a scheme. We just need to say explicitly what we
mean by a ‘vector space’ and a ‘family of linear maps’. By a vector space, we will simply
mean Ar or a scheme isomorphic to it. A family of linear maps U × Ar → U × As is a
morphism that is given in coordinates on each SpecA in an affine open cover of U in the
form

A[t1, . . . , ts]→ A[t1, . . . , tr]

ti 7→ tiM

for some M ∈ Mats×r(A).

Definition 13.1 (Vector bundle, version 1). Let S be a scheme. A vector bundle over S is
a projection p : E → S, along with

(i) a cover U of S by open subschemes and, for each U ∈ U , an isomorphism p−1E '
U × V over U for each U ∈ U , where V is some affine space Ar, such that

(ii) if U1 and U2 are two open sets in U , the transition function

(U1 ∩ U2)× V1
∼−→ p−1(U1 ∩ U2)

∼−→ (U1 ∩ U2)× V2

is a family of linear maps over U1 ∩ U2.

13.2 Locally free sheaves

Reading 13.2. [Vak14, Section 13.1]

Definition 13.3 (Locally free sheaf). Let S be a scheme. A sheaf of OS-modules is a sheaf
E , along with the structure of a OS(U)-module on E (U) for each open U ⊂ S, such that
the restriction maps are equivariant in the sense illustrated below:

OS(U) // OS(V )

E (U) //
��

E (V )
��

A locally free sheaf over S is a sheaf of OS-modules E such that E is locally isomorphic to
O⊕nS for some n. If E is locally isomorphic to O⊕nS then E is said to be locally free of rank
n. Locally free sheaves of rank 1 are also called invertible sheaves.

1This means that the map is of the form (x, y) 7→ (x, F (x)y) where F : U1 ∩ U2 → HomVect(V1, V2) is
a C∞ function. In other words, a family of linear maps from Rn to Rm over U is a m × n matrix of C∞

functions on U .
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In other words, E is locally free if there is a cover of S by open subsets U such that
E
∣∣
U
' O⊕nU as a sheaf of OU -modules. Note that the number n does not have to be the

same for every open subset in the cover.

13.3 Vector space schemes

Exercise 13.4. Show that, for any scheme X, the set HomSch(X,A1) has the structure of
a commutative ring, and for any morphism of schemes X → Y , the induced map

HomSch(Y,A1)→ HomSch(X,A1)

is a ring homomorphism. Interpret this by saying A1 is a commutative ring scheme. (Hint:
Hom(X,A1) = Γ(X,OX).)

Definition 13.5. An scheme of A1-modules2 over a scheme S is an S-scheme E and the
structure of a HomSch/S(T,A1)-module on HomSch/S(T,E) for every S-scheme T , such
that for every morphism of S-schemes f : U → T , the function

HomSch/S(T,E)→ HomSch/S(U,E)

is a homomorphism, in the sense that for all x ∈ HomSch/S(T,E) and all λ ∈ Hom(T,A1),
we have

f∗(λx) = f∗(λ)f∗(x).

A morphism of schemes of A1-modules over S is a morphism of S-schemes E → F such
that for any S-scheme T , the map

E(T )→ F (T )

is an A1(T )-module homomorphism.

Exercise 13.6.This exercise is a
special case of the next

one. Do you see how?

Show that there is a natural structure of a scheme of A1-modules over S
on S ×An for any n. (Hint: Show that HomSch/S(T, S ×An) = Γ(T,OnT ).) We write An

S

for this scheme of A1-modules.

Exercise 13.7. Suppose that E is a A1-module over S and T → S is a morphism of
schemes. Put a A1-module structure on T ×S E in a natural way.

When T ⊂ S is an open subscheme, we write E
∣∣
T

for the construction from the previous
exercise.

Definition 13.8 (Vector bundle, version 2). A vector bundle is a A1-module E over a
scheme S such that there is an open cover of S by schemes T with E

∣∣
T
' T ×An for some

n. A morphism of vector bundles is a morphism of schemes of A1-modules.

14 Quasicoherent sheaves and schemes in modules

14.1 Quasicoherent sheaves

Exercise 14.1.This is important but
should feel like

repetition of
Exercise 5.11. Reuse as

much of that exercise
as you can.

Let S = SpecA be an affine scheme. If M is an A-module, define

M̃(D(f)) = Mf where Mf denotes the A[f−1]-module A[f−1]⊗AM .

2There doesn’t seem to be standard terminology for this object.
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(i) Construct restriction morphisms making M̃ into a presheaf of OS-modules on the basis
of principal open affine subsets of S.

(ii) Show that M̃ is a sheaf on the basis of principal open affine subsets of S. (Hint: The
proof is exactly the same as the proof in Exercise 5.11.)

(iii) Extend M̃ to a sheaf on SpecA.

Definition 14.2 (Quasicoherent sheaf). A sheaf F of OS-modules on a scheme S is said

to be quasicoherent if there is a basis of affines U = SpecA such that F
∣∣
U
' M̃ for some

A-module M .

Exercise 14.3. Show that a sheaf of OS-modules is quasicoherent if and only if it may
be presented locally as the cokernel of a homomorphism of free modules (not necessarily of
finite rank).

Exercise 14.4.Note the correction!
The word

quasicoherent was
previously missing.

Show that a quasicoherent sheaf of OS-modules on an affine scheme SpecA

is always of the form M̃ for some A-module M .

14.2 Morphisms of vector bundles

Charts

If p : E → S is a vector bundle with charts p−1Ui ' Ar
Ui

and q : F → S is a vector bundle
with charts over the same open sets q−1Ui ' As

Ui
then a morphism of vector bundles E → F

is a morphism of S-schemes such that the induced maps

Ar
Ui
' p−1Ui → q−1Ui ' As

Ui

are linear maps.

Exercise 14.5.Not recommended!
The point is that this
isn’t a pleasant thing

to do.

Define a morphism of vector bundles E and F whose charts are given on
different open covers {Ui} and {Vj}.

Locally free sheaves

Definition 14.6. If F and G are sheaves of OS-modules then a homomorphism F → G
is a homomorphism of sheaves such that for each open U ⊂ S the map F (U)→ G (U) is a
homomorphism of OS(U)-modules.

Schemes of modules

Definition 14.7. Suppose E and F are schemes of A1-modules over S. A morphism
E → F is a morphism of S-schemes ϕ : E → F such that for every S-scheme T , the map
E(T )→ F (T ) is A1(T )-linear.

14.3 Pullback of vector bundles and sheaves

Charts

Suppose p : E → S is a vector bundle with charts p−1Ui ' Ar
Ui

. Let f : T → S be a
morphism of schemes. Then q : f−1E → T can be given charts q−1(f−1Ui) ' Ar

f−1Ui
.

Exercise 14.8. Verify that the charts for f−1E are compatible and yield a vector bundle
on T .
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Schemes of modules

Suppose p : E → S is a scheme of A1-modules over S and f : T → S is a morphism of
schemes. For any T -scheme g : U → T , define

f−1E(U, g) = E(U, fg).

Exercise 14.9.Should be a matter of
bookkeeping. Probably

not worth writing up.

Show that f−1E is naturally equipped with the structure of a sheaf of
A1-modules over T .

Locally free sheaves

Exercise 14.10 (Pushforward of sheaves of modules). Suppose that f : X → Y is a
morphism of sheaves and F is a OX -module. Show that f∗F is naturally equipped with
the structure of a OY -module. Show that this gives a functor

f∗ : OX -Mod→ OY -Mod

called pushforward of OX -modules to Y .

Definition 14.11 (Pullback of sheaves of modules). Let f : X → Y be a morphism
of schemes. The pullback of an OY -module G is an OX -module f∗G with the following
universal property: for all OX -modules F ,

HomOX -Mod(f∗G ,F ) ' HomOY -Mod(G , f∗F )

naturally in F .

The pullback exists for all sheaves of modules and all morphisms of ringed spaces, but
we’ll just construct it for quasicoherent sheaves and morphisms of schemes.

Exercise 14.12. (i) Suppose that f : X → Y is a morphism of affine schemes. Construct
f∗F for any quasicoherent sheaf on Y . (Hint: Assume X = SpecA, Y = SpecB,

F = M̃ and take f∗F = (B ⊗AM)∼.)

(ii) Suppose that f : X → Y is an arbitrary morphism of schemes and F is a sheaf of
modules on Y . Suppose that you know (f

∣∣
U

)∗F exists for all U in an open cover of
X. Glue these together to construct f∗F .

(iii) Conclude that f∗F exists whenever f : X → Y is a morphism of schemes and F is
quasicoherent.

If you already know about the tensor product of sheaves of modules, the following definition of f∗ is
more efficient than the one above:

Definition 14.13. Suppose that F is a sheaf of OY -modules on Y and f : X → Y is a morphism of ringed
spaces. Define f∗F = OX ⊗f−1OY

f−1F .

Exercise 14.14. Show that f∗F as defined above satisfies the required universal property.

Exercise 14.15.Should just be a line or
two.

Suppose that F is a locally free sheaf on Y and f : X → Y is a morphism
of schemes. Show that f∗F is locally free.
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Interpretation of sheaf pullback in terms of charts

Fix a map f : X → Y and a locally free sheaf F on Y . Choose an open cover of Y by Ui
and isomorphisms αi : F

∣∣
Ui
' OriUi

. We construct a sheaf of OX -modules on X by gluing.

Take Gf−1Ui
= Orif−1Ui

. On f−1Ui ∩ f−1Uj , choose the isomorphism

Gf−1Ui

∣∣
f−1Ui∩f−1Uj

' Orif−1Ui∩f−1Uj
→ Orjf−1Ui∩f−1Uj

' Gf−1Uj

∣∣
f−1Ui∩f−1Uj

to be given by f∗ϕij , where ϕij is the transition function

ϕij : OriUi∩Uj

αi←− F
∣∣
Ui

∣∣
Ui∩Uj

= F
∣∣
Uj

∣∣
Ui∩Uj

αj−→ OrjUi∩Uj
.

Exercise 14.16. Show that the Gf−1Ui
glue together to give f∗F (via a canonical isomor-

phism).

Thus the transition functions of f∗F are pulled back from the transition functions of
F . This is one reason it is reasonable to use the notation f∗F for this construction.
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Chapter 6

Some moduli problems

15 Basic examples

15.1 The scheme in modules associated to a quasicoherent sheaf

Reading 15.1. [GD71, §9.4]

Let F be a quasicoherent sheaf of OS-modules on S.1 For each S-scheme T , let

F (T ) = HomOT -Mod(F
∣∣
T
,OT ).

We give F (T ) the structure of a A1(T )-module. Suppose that λ ∈ A1(T ) = Γ(T,OT ) and
x ∈ F (T ). Then multiplication by λ gives a morphism OT → OT and composition with this
homomorphism induces a map F (T )→ F (T ). We declare that λ.x is the image of x under
this map.

We write F = V(F ) for this construction.

Exercise 15.2. Show that F = V(F ) has the structure of a scheme of modules over S:

(i) Prove that F is a Zariski sheaf on Sch/S.

(ii) Prove that F is representable by an affine scheme when F is quasicoherent and S is

affine. (Hint: When S = SpecA and F = M̃ , represent it by Spec SymM .)

(iii) Conclude that F is representable by a scheme over S.

Theorem 15.3. The functor V : QCoh(S)◦ → A1-Mod/S constructed above is fully
faithful. It induces an equivalence between the categories of locally free OS-modules and of
vector bundles.

What we need to show is that the natural map

HomOS-Mod(E ,F )→ HomA1-Mod/S(V(F ),V(E )) (∗)

is a bijection for any two quasicoherent sheaves E and F on S.

1In fact, the definition works for any sheaf of OS-modules.
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Exercise 15.4. Show that (19.2) may be regarded as the map of global sections between
two sheaves on S. Conclude that to prove (19.2) is a bijection it is sufficient to assume S is
affine.

The exercise tells us we may assume that S = SpecA. Then E = M̃ and F = Ñ for two
A-modules M and N . The the underlying schemes of V(M̃) and V(Ñ) are Spec SymAM
and Spec SymAN , respectively.

Exercise 15.5. Prove that every A1-linear map V(Ñ) → V(M̃) arises from a homomor-
phism of A-modules M → N .

16 The projective line

For any scheme S, let P 1(S) be the set of triples (L, s, t) where L is a rank 1 vector bundle
on S and s, t : L→ A1

S are linear maps such that

(s, t) : L→ A2
S

is a closed embedding. Let Q1(S) be the set of triples (L , x, y) where L is an invertible
sheaf on S (Definition 13.3) and x, y ∈ Γ(S,L ) are generators of L .2

Exercise 16.1. Describe restriction maps making P 1 and Q1 into functors. (Hint: The
pullback of a closed embedding is a closed embedding.)

Exercise 16.2. Prove that P 1 and Q1 are isomorphic functors.

Exercise 16.3. Prove that P 1 and Q1 are Zariski sheaves. (Hint: In view of Exercise 16.2,
you only have to show one is a Zariski sheaf.)

Exercise 16.4. Let U ⊂ Q1 be the subfunctor consisting of all triples (L , x, y) such that
x generates L .

(i) Show that the corresponding subfunctor V ⊂ P 1 consists of all triples (L, s, t) such
that s : L→ A1 is an isomorphism.

(ii) Prove that U ' A1. (Hint: On U , multiplication by x gives an isomorphism O → L .)

(iii) Show that U is an open subfunctor of Q1.

(iv) Prove that Q1 is a scheme. (Hint: Let U0 be the set of triples (L , x, y) such that x
generates L and let U1 be the set of triples (L , x, y) such that y generates L .)

Exercise 16.5. Prove that Q1 ' P1. (Hint: What is the intersection of U0 and U1?
Suggestion: Use symbols U0 and U1 for the standard charts of P1 from Section 1.1.)

2This means that if z ∈ Γ(U,L ) then there is a cover of U by open subsets V such that z
∣∣
V

= ax
∣∣
V

+by
∣∣
V

for some a, b ∈ Γ(V,OS). In other words, L is the smallest OS-submodule of itself that contains both x
and y.
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16.1 The tautological line bundle

If S is a scheme then a map S → Pn corresponds to a linear embedding of a line bundle
L ⊂ An+1

S or to a surjection On+1
S → L onto an invertible sheaf. In particlar, the identity

map Pn → Pn gives

L ⊂ An+1
Pn

OPn → L .

The quotient L is usually denoted OPn(1) and is called the tautological (quotient) sheaf.
The subbundle L is called the tautological line (sub)bundle and is sometimes denoted
OPn(−1) by people who are sloppy about the distinction between quasicoherent sheaves
and schemes of modules.

Exercise 16.6. Suppose that f : S → Pn corresponds to (L , ξ0, . . . , ξn). Show that
f∗OPn(1) = L in a canonical way.

Exercise 16.7. Show that OPn(1) is not isomorphic to OPn . (Hint: Let A be a commuta-
tive ring, like Z[

√
−5], that is not a principal ideal domain and let I be a nonprincipal ideal

with 2 generators. Use these to construct a map f : SpecA→ Pn and show that f∗OPn(1)
is not isomorphic to OSpecA.)

B Projective space and the Grassmannian

B.1 Projective space

For any scheme T , define Pn(T ) to be the set of closed embeddings of vector bundles
L→ An+1

T , where L is a line bundle over T .
Define Qn(T ) to be the set of surjections of OT -modules On+1

T → L where L is locally
free of rank 1.

Exercise B.1. Prove that Pn is isomorphic to Qn for all n. (Hint: What you need to show
here is that if L→ An+1

T corresponds to On+1
T → L then the former is a closed embedding

if and only if the latter is a surjection. It’s enough to prove this locally in T , so you can
assume L = A1

T and L = OT .)

Do one of the following two exercises. They are two perspectives on the same thing:

Exercise B.2. Show that Pn is a scheme:

(i) Show that Pn is a Zariski sheaf.

(ii) For each i = 0, . . . , n, let Ui be the subfunctor of Qn consisting of those linear closed
embeddings f : L→ An+1

T such that if pi : An+1
T → A1

T is the i-th projection the map
f ◦ i is an isomorphism. Show that Ui ' An.

(iii) Show that each Ui is representable by An.

(iv) Show that the Ui cover Qn.

Exercise B.3. Show that Qn is a scheme:

(i) Show that Qn is a Zariski sheaf.
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(ii) For each i = 0, . . . , n, let Ui be the subfunctor of Qn consisting of those surjections
On+1
T → L such that OT ei surjects onto L . Show that Ui is an open subfunctor of

Qn.

(iii) Show that each Ui is representable by An.

(iv) Show that the Ui cover Qn.

Exercise B.4. Recall that we defined Pn previously to be Proj Z[x0, . . . , xn]. Prove that
Pn ' Pn or Pn ' Qn.

B.2 The Grassmannian

Fix a non-negative integer r and regard Ar as a vector space. That is, remember that we
can use functions in Γ(S,OS) = HomSch(S,A1) to act on HomSch(S,Ar). Define a functor

G : Sch◦ → Sets

by taking G(S) to be the set of closed vector bundle subschemes W ⊂ Ar × S.

Exercise B.5. Show that G is the disjoint union of open subfunctors
∐r
k=0Gk where Gk

parameterizes closed vector bundle subschemes W ⊂ Ar × S of rank k.

Exercise B.6.Correction: O⊕k
S was

supposed to be O⊕r
S .

Thanks to John Willis.

Show that Gk is isomorphic to the functor Qk : Sch◦ → Sets where Qk(S)

is the set of isomorphism classes of surjections O⊕rS → W , with W being a locally free sheaf
of OS-modules of rank k.

Exercise B.7. Show that the functors Qk are representable by schemes. (Hint: Use the
fact that you can glue vector bundles and homomorphisms of vector bundles to prove that
Qk is a Zariski sheaf. To get an open cover observe that at each point of Qk there is some
k-element subset I ⊂ {1, . . . , r} such that O⊕IS → W is surjective. Let UI ⊂ Gk be the
subfunctor parameterizing surjections O⊕rS → W such that O⊕IS → W is surjective. Show
that UI is an open subfunctor of Gk and that UI is representable by Ak×(r−k).)

The scheme representing Gk is denoted Grass(k, r) and called the Grassmannian.

Exercise B.8. Define a functor on S-schemes parameterizing closed linear subschemes of a vector bundle
V over S. Show that this is representable by an S-scheme. (Hint: After defining the functor and showing
it is a sheaf, reduce to the case considered above by passing to an cover of S by open subsets U such that
V
∣∣
U
' U ×Ar.)

17 Coherent schemes

17.1 The diagonal

Exercise 17.1. The equalizer of a pair of morphisms of schemes is locally closed in the
domain.

Exercise 17.2. Show that the equalizer of a pair of maps X ⇒ Y can be interpreted as
the fiber product X ×Y×Y ∆Y .



17. COHERENT SCHEMES 63

17.2 Quasicompact and quasiseparated morphisms

Reading 17.3. [Har77, Exercises 2.13, 3.2], [Vak14, §§3.6.5, 5.1, 10.1.9–12]

Recall that a scheme X is quasicompact if every open subcover of X has a finite subcover.

Definition 17.4. A morphism of schemes f : X → Y is said to be quasicompact if for,
for any morphism of schemes Z → Y with Z quasicompact, the fiber product Z ×Y X is
quasicompact.

It is said to be quasiseparated if for every pair of maps g, h : Z → X with Z quasicompact
such that fg = fh, the equalizer W ⊂ Z of g and h in Z is quasicompact.

Morphisms that are both quasicompact and quasiseparated are sometimes called coher-
ent.

Exercise 17.5. Show that a morphism of schemes f : X → Y is quasiseparated if and only
if the diagonal map X → X ×Y X is quasicompact.

Exercise 17.6. Suppose that f : X → Y is a morphism of schemes such that for any
quasicompact open subset U ⊂ Y the preimage f−1U is also quasicompact. Show that f is
quasicompact. (Hint: In the notation of Definition 17.4, reduce to the case where Z and Y
are affine.)

17.3 Pushforward of quasicoherent sheaves

Exercise 17.7. Show that a sheaf F of OX -modules on X = SpecA is quasicoherent if
and only if Γ(D(f),F ) = Γ(X,F )f for all f ∈ A.

Exercise 17.8. Show that the kernel and cokernel of a homomorphism of quasicoherent
sheaves are quasicoherent sheaves.

Theorem 17.9. Suppose that π : X → Y is a quasicompact and quasiseparated morphism
of schemes and F is a quasicoherent sheaf on X. Prove that π∗F is a quasicoherent sheaf
on Y .

Exercise 17.10. (i) Show by example that an infinite product of quasicoherent sheaves
is not necessarily quasicoherent. (Hint: Use the failure of localization to commute
with infinite products.)

(ii) Show by example that an infinite intersection of a quasicoherent subsheaves of a qua-
sicoherent sheaf is not necessarily quasicoherent.

Exercise 17.11. Use the previous exercise to show that both the hypothesis of quasicom-
pactness and quasiseparation are necessary in Theorem 17.9.
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Chapter 7

Essential properties of schemes

18 Finite presentation

18.1 Filtered diagrams

Definition 18.1. A category P is said to be filtered if every finite diagram in P has an
upper bound.

In practical terms, the definition means the following:

(i) for any pair of objects x, y ∈ P there is an object z ∈ P and morphisms x → z and
y → z;

(ii) for any pair of morphisms x⇒ y in P there is a morphism y → z in P that coequalizes
them.

Note that the second condition holds vacuously for a partially ordered set.1

18.2 Remarks on compactness

Exercise 18.2. (i) Suppose that X is a quasicompact topological space and Y =
⋃
Yi

is a filtered union of open subsets. Show that any morphism X → Y factors through
one of the Yi.

(ii) Suppose that X is a quasicompact and quasiseparated topological space with a basis
of quasicompact open subsets and Y = lim−→Yi is a filtered colimit of a diagram of
topological spaces where the transition maps are open embeddings and the Yi are all
étale over Y . Show that any morphism X → Y factors through one of the Yi.

18.3 Finite type and finite presentation

Reading 18.3. [GD67, IV.8.14]

1The conditions above are usually taken as the definition of a filtered diagram (and the first as the
condition of a filtered partially ordered set). However, just as the first condition does not extend trivially,
these two conditions do not extend trivially to higher categories. Definition 18.1 does.
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Definition 18.4. A morphism of schemes f : X → Y is said, respectively, to be locally
of finite type or locally of finite presentation if there is an open cover of Y by open affine
subsets V = SpecA such that f−1V is covered by open affines U = SpecB where B is
a finite type or finitely presented A-algebra. The morphism is of finite type if it is quasi-
compact and locally of finite type. It is finitely presented if it is locally of finite presentation
and quasicompact and quasiseparated.

Exercise 18.5. Suppose that B is an A-algebra and C = lim−→Ci is a filtered direct limit of
A-algebras. Consider the map

Φ : lim−→HomA-Alg(B,Ci)→ HomA-Alg(B,C).

(i) Prove that Φ is an injection for all C = lim−→Ci if B is of finite type over A.

(ii) Prove that Φ is a bijection for all filtered unions C =
⋃
Ci if and only if B is of finite

type over A.

(iii) Prove that Φ is a bijection for all C = lim−→Ci if and only if B is of finite presentation
over A.

Exercise 18.6.Should be easy Show that a morphism of locally noetherian schemes is of locally finite type
if and only if it is of locally finite presentation.

Lemma 18.7. Let X be an A-scheme and let C = lim−→Ci be a colimit of A-algebras. Con-
sider the map

Φ : lim−→X(Ci)→ X(C)

(i) If C is the filtered colimit of the Ci and X is of finite type the Φ is an injection.

(ii) If C is the filtered union of the Ci and C is an integral domain and X is of finite type
then Φ is a bijection.

(iii) If C is the filtered colimit of the Ci and X is of finite presentation then Φ is a bijection.

Theorem 18.8. For any scheme X, the following conditions are equivalent:

(i) X is locally of finite presentation;

(ii) for any filtered system of commutative rings Ai with lim−→Ai = A, the map lim−→X(Ai)→
X(A).

19 Separated and proper morphisms I

Reading 19.1. [Vak14, §§10.1, 10.3, 12.7] [Har77, §II.4]

In this section and the next we will investigate the algebro-geometric analogues of com-
pact and Hausdorff topological spaces. Recall that a topological space X is called Hausdorff
if, for any pair of points x and y, there are open neighborhoods x ∈ U and y ∈ V with
U ∩ V = ∅. Equivalently, U × V is an open neighborhood of (x, y) in X ×X that does not
meet the diagonal X ⊂ X ×X. In other words, the diagonal is closed.

Exercise 19.2. Show that the following conditions are equivalent for a topological space
X:
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(i) X is Hausdorff;

(ii) the diagonal X → X ×X is a closed embedding;

(iii) for any pair of maps Z ⇒ X, their equalizer is closed in Z.

The product of two schemes does not have the product topology, so these conditions are
not equivalent for schemes. We know that essentially no scheme is Hausdorff in the literal
sense, but the latter two conditions still make sense. We will use these as the definition of
a separated scheme.

A second interpretation of the Hausdorff condition is that a sequence should have at
most one limit. Again, it is hard to make sense of this literally for schemes, but we can
reinterpret it in a way that does make sense. Instead of sequences, we look at maps from
open curves into X and stipulate that such a map can be completed in at most one way.

A first candidate for such a definition is that any map A1
k r {0} → X can be completed

in at most one way to A1
k → X. Indeed, if X is separated, this must be true. However, there

are a few problems owing to the rigidity of algebraic geometry. There are many different
kinds of open arcs, of which the above is just one. In order to get a sufficiently large list,
we look at valuation rings.

19.1 A criterion for closed subsets

Exercise 19.3 (Repeat of Exercise 7.26). Show that a closed subset of a scheme is closed
under specialization but that a subset closed under specialization is not necessarily closed.

The following theorem says that, Exercise 19.3 notwithstanding, being closed under
specialization is equivalent to being closed in most situations that arise in practice:

Theorem 19.4 ([Sta15, Tags 00HY and 01K9], [GD67, Proposition (II.7.2.1)]). The image
of a quasicompact morphism is closed if and only if it is stable under specialization.

Exercise 19.4.1.Repeat of
Exercise 7.11.

Let X be a scheme and Z a closed subset. Let i : Z → X be the
inclusion. Define A (U) to be the quotient of OX(U) by the relation f ∼ g if f(p) = g(p)
for all p ∈ U ∩ Z. Set OZ = i−1A . Show that (Z,OZ) is a reduced scheme. This is called
the reduced scheme structure on Z.

Corollary 19.4.2. A quasicompact morphism of schemes f : X → Y is closed if and only
if specializations lift along f .

19.2 Valuation rings

Reading 19.5. [AM69, pp. 65–67], [GD67, §II.7.1]

Definition 19.6. A valuation ring is an integral domain A such that for all nonzero x in
the field of fractions of A, either x ∈ A or x−1 ∈ A.

Exercise 19.7. (i) Show that Z(p) is a valuation ring.

(ii) Show that k[t]p is a valuation ring when k is a field and p is any ideal other than the
zero ideal.

(iii) Show that k[[t]] is a valuation ring when k is a field.
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(iv) Let k be a field and let A =
⋃
n→∞ k[[t1/n]] be the ring of Puiseux series. Show that

A is a valuation ring.

(v) Give an example of a local ring that is not a valuation ring.

Exercise 19.8.These are a few basic
facts about valuation

rings. They aren’t
essential but they may

help build intuition.

(i) If A is a valuation ring then the fractional ideals of A are totally ordered under
inclusion.

(ii) A valuation ring is a local ring.

(iii) If A is a valuation ring then all finitely generated ideals of A are principal. (Note that
this does not mean A is a principal ideal domain!)

(iv) If A is a valuation ring then the nonzero fractional ideals2 of A form a group under
multiplication.

(v) [AM69, Chapter 5, Exercise 30] Let K be the field of fractions of a valuation ring A.
Let v(x) = Ax for any x ∈ K∗. This gives a homomorphism from K∗ into the group
of nonzero fractional ideals of K. Show that v(x + y) ≥ min{v(x), v(y)} where the
nonzero fractional ideals are ordered by inclusion. Thus v is a valuation.

Theorem 19.9. Let x ∈ X(K) be a K-point of X and suppose that x ; y.3 Then there
is a valuation ring R with field of fractions K and a map SpecR → X sending the closed
point of SpecR to y and restricting to x on the generic point.

Thus the inclusion of a valuation ring in its field of fractions is the ‘universal specializa-
tion’.

19.3 Separatedness

Definition 19.10 (Separatedness). A morphism of schemes π : X → Y is separated if, for
any f, g : Z → X such that πf = πg, the equalizer of f and g is a closed subscheme of Z.

Exercise 19.11. Let k be a field and let X = A1
k ∪A1

kr{0} A1
k be the affine line with its

origin doubled. Show that X → Spec k is not separated.

Exercise 19.12.Important and easy;
correction: ‘closed’

corrected to
‘separated’ (thanks to

Shawn)

Show that π : X → Y is separated if and only if δ = (idX , idX) : X →
X ×Y X is a closed embedding. This is how separatedness is usually defined.

Exercise 19.13. Prove that a topological space is Hausdorff if and only if its diagonal is a
closed embedding.

Exercise 19.14.Important and easy Prove that every affine scheme is separated.

Exercise 19.15.Not directly related to
this section but useful

in the next exercise.

A locally closed embedding of schemes with closed image is closed. (Hint:
Use the fact that an embedding can be shown to be a closed embedding on an open cover
of the codomain.)

Exercise 19.16. A morphism π : X → Y is separated if and only if it is quasiseparated
and its diagonal is closed under specialization. (Hint: Make use of Exercise 19.15.)

2A fractional ideal is a finitely generated submodule of the field of fractions.
3Properly speaking, it is the image of SpecK under x that specializes to y.
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This gives an intuitive picture of specialization. A specialization in X ×Y X of a point
x in the diagonal yields a pair of specializations x ; x′1 and x ; x′2 in X, with both
projecting to the same specialization y ; y′ of Y . If this specialization lifts then x′1 = x′2.

Theorem 19.17 (Valuative criterion for separatedness). A quasiseparated morphism of
schemes f : X → Y is separated if and only if whenever R is a valuation ring with field of
fractions K, a diagram (19.1) admits at most one lift.

SpecK //

��

X

f

��

SpecR //

;;

Y

(19.1)

19.4 Properness

Definition 19.18. A morphism of schemes f : X → Y is said to be universally closed if,
for every Y -scheme Y ′ the morphism f ′ : X ′ → Y ′ induced by base change is closed.

Exercise 19.19. Let k be a field. Show that A1
k → Spec k is closed but not universally

closed.

Definition 19.20 (Properness). A morphism of schemes f : X → Y is proper if it is
separated, of finite type, and universally closed.

Exercise 19.21. Suppose that f : X → Y and g : Y → Z are morphisms of schemes. Show
the following:

(i) Show that all closed embeddings are proper.

(ii) If f and g are both proper the gf is proper.

(iii) [Har77, Exercise II.4.8] If g is separated and gf is proper then f is proper.

Exercise 19.22. Show that X → Y is separated if and only if X → X ×Y X is proper.

Theorem 19.23. Suppose that f : X → Y is quasicompact and quasiseparated. Then f is
separated and universally closed if and only if every diagram (19.2) admits a unique lift.

SpecK //

��

X

f

��

SpecR //

;;

Y

(19.2)

Corollary 19.23.1. Suppose that f : X → Y is of finite type and is quasiseparated. Then f
is proper if and only if f satisfies the right lifting property with respect to SpecK ⊂ SpecR
for every valuation ring R with field of fractions K.

19.5 Projective schemes

Definition 19.24. A projective scheme is a scheme that can be embedded inside PN , for
some integer N , as a closed subscheme.
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Theorem 19.25. Projective schemes are proper.

Exercise 19.26 (Nakayama’s lemma). Let M be a finitely generated module over a local
ring A with maximal ideal p. Show that pM = M if and only if M = 0.

Exercise 19.27 (Support of a finitely generated module is closed). Show that the support
of a finitely generated module M over an affine scheme A is closed in SpecA. (Hint: Let I
be the annihilator ideal of M and show that M ⊗A k(p) = 0 if and only if p ∈ D(I).)

Exercise 19.28. Let E be a vector bundle over a scheme Y . Let P(E) : (Sch/Y )◦ → Sets be functor
sending an Y -scheme X to the set of closed embeddings L → E

∣∣
X

in which L is a line bundle over X.

Verify that P(E) is representable by a scheme. (Hint: Cover X by open sets U where E
∣∣
U

is trivial and use

PN × U .)

Definition 19.29 ([GD67, Proposition (II.5.5.1) and Définition (II.5.5.2)]). A morphism of schemes f :
X → Y is said to be projective if there is a closed embedding X → P(E) over Y , for some vector bundle E
over Y .

Exercise 19.30. Prove that projective morphisms are proper.

20 Separated and proper morphisms II
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Étale morphisms

21 Separated and proper morphisms III

22 Étale morphisms I

Recall that a morphism of topological spaces X → Y is said to be étale if it is a local
homeomorphism. This definition does not work well for schemes, where the Zariski topology
is too coarse to detect maps that should be considered local homeomorphisms.

Exercise 22.1.If you have studied
differential geometry,

this exercise should be
essentially immediate.

If you have not studied
differential geometry,
there is no reason to

do this exercise.

Show that a morphism of differentiable manifolds f : X → Y is a local
diffeomorphism near a point x if and only if the map df : TxX → Tf(x)Y is an isomorphism.
(Hint: Inverse function theorem.)

Exercise 22.2. (i) Show that the map C∗ → C∗ sending z to zn is a local homeomor-
phism for all nonzero n ∈ Z.

(ii) Show that the map Spec C[t, t−1] → Spec C[s, s−1] sending s to tn is not a local
homeomorphism for any n except ±1. (Hint: Consider the map on generic points.)

23 Étale morphisms II

Instead of a topological characterization of étale maps, we will use a geometric one. In a
sense, a map of topological spaces is a local homeomorphism if its source and target are
locally indistinguishable. Taking this as our cue, we call a map of schemes étale if its source
and target are infinitesimally indistinguishable.

Exercise 23.1. Let i : Z → Z ′ be a closed embedding. Let I be the kernel of OZ′ → i∗OZ
(as a homomorphism of OZ′ -modules). Show that I is a quasicoherent sheaf.

Definition 23.2. A morphism of schemes Z → Z ′ is said to be an infinitesimal extension
or a nilpotent thickening or a nilpotent extension if it is a closed embedding and the sheaf
of ideals IZ/Z′ is nilpotent.

If I2
Z/Z′ = 0 then Z ⊂ Z ′ is said to be a square-zero extension or square-zero thickening.
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Exercise 23.3. Show that a closed embedding Z → Z ′ is an infinitesimal extension if and
only if there is a positive integer n and local charts SpecA→ SpecA′ for Z → Z ′ such that,
when I is defined to be ker(A′ → A), we have In = 0.

Exercise 23.4. Show that every nilpotent thickening can be factored into a sequence of
square-zero thickenings. (Hint: Take the closed subschemes defined by InZ/Z′ .)

Exercise 23.5. Show that if Z ⊂ Z ′ is an infintesimal thickening then the inclusion of
topological spaces |Z| ⊂ |Z ′| is a bijection.

Definition 23.6. A morphism of schemes f : X → Y is said to be formally étale if,
whenever Z ⊂ Z ′ is an infinitesimal thickening, any diagram of solid arrows (23.1) can be
completed by a dashed arrow in a unique way.

Z //

��

X

f

��

Z ′

>>

// Y

(23.1)

If f is also locally of finite presentation then we say f is étale.

Exercise 23.7. Show that all open embeddings are étale. In a sense this shows that ‘locally
indistinguishable’ implies ‘infintiesimally indistinguishable’. (It is possible to do this directly,
but you might find this exercise easier using the results from the next one.)

Exercise 23.8.Correction: “open
cover” in the first part

changed to “basis of
open subsets”. Thanks

to Paul.

(i) Show that to prove a diagram (23.1) has a unique lift, it is sufficient produce unique
lifts over a basis of open subsets of Z ′. (Hint: Use the fact that X and Y are Zariski
sheaves.)

(ii) Show that we would have arrived at an equivalent definition of étale morphisms if we
had only required liftings with respect to infinitesimal extensions of affine schemes.

(iii) Show that we would have arrived at an equivalent definition of étale morphisms if we
had only required liftings with respect to square-zero extensions of affine schemes.

Exercise 23.9. (i) Show that the map

Spec C[t, t−1]→ Spec C[s, s−1]

sending s to tn is étale for all n 6= 0.

(ii) Suppose k is a field of characteristic p. For which values of n is the map

Spec k[t, t−1]→ Spec k[s, s−1]

étale?
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Smooth morphisms

24 Étale morphisms III

24.1 The module of relative differentials

Definition 24.1. Let A be a commutative ring, let B be a commutative A-algebra, and let
J be a B-module. An A-derivation from B into J is a function δ : B → J such that

Der1 δ(A) = 0 and

Der2 δ(xy) = xδ(y) + yδ(x) for all x, y ∈ B.

The set of A-derivations from B into J is denoted DerA(B, J).

Exercise 24.2. Show that DerA(B, J) is naturally equipped with the structure of an A-
module via (aδ)(x) = aδ(x).

Exercise 24.3. Let B + εJ be the commutative ring whose elements are symbols x + εy
with x ∈ B and y ∈ J with the addition rules

(x+ εy) + (x′ + εy′) = (x+ x′) + ε(y + y′)

(x+ εy)(x′ + εy′) = xx′ + ε(xy′ + x′y).

(i) Show that there is a homomorphism p : B + εJ → B defined by p(x+ εy) = x.

(ii) Show that there is a homomorphism i : B → B + εJ defined by i(x) = x+ ε0.

(iii) Suppose that f : B → B + εJ is an A-algebra homomorphism such that pf = idB .
Show that f − i factors through εJ ⊂ B + εJ and that regarded as a map B → J it
is a derivation.

(iv) Suppose that δ : B → J is a derivation. Show that idB + εδ : B → B + εJ is a
homomorphism of A-algebras.

(v) Conclude that DerA(B, J) = HomB
A(B,B+ εJ) (where it’s your job to figure out what

the notation HomB
A means).
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Exercise 24.4. Show that there is a universal B-module ΩB/A and A-derivation d : B →
ΩB/A. (In other words, show that the functor J 7→ DerA(B, J) is representable by a B-
module ΩB/A.)

Definition 24.5. The universal A-derivation B → ΩB/A constructed in Exercise 24.4 is
called the module of relative differentials of B over A or the module of relative Kähler
differentials.

Exercise 24.6. Compute ΩB/A when B = A[x1, . . . , xn] is a polynomial ring.

Exercise 24.7 ([Har77, Proposition II.8.1], [Vak14, Theorem 21.2.9]). Suppose A→ B →
C are homomorphisms of commutative rings.

(i) Show that for any C-module J there is a natural exact sequence of C-modules:

0→ DerB(C, J)→ DerA(C, J)→ DerA(B, J)

(ii) Deduce an exact sequenceTypo corrected in the
exact sequence. Tensor

product is over B not
over A. Thanks Ryan.

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

(iii) Find an example to show that the sequence can’t be completed with a 0→ C⊗AΩB/A
on the left. (Hint: Consider A = k a field, B = k[x]/(x2), and C = B/xB ' k.)

Exercise 24.8. Suppose that B → C is an epimorphism of A-algebras.1

(i) Show that ΩC/B = 0. (This isn’t used in the rest of the exercise.)

(ii) Let I be the kernel of B → C. For any C-module J , construct an exact sequence:

0→ DerA(C, J)→ DerA(B, J)→ HomB-Mod(I, J)

(iii) Conclude that there is an exact sequence of C-modules:

I/I2 → C ⊗B ΩB/A → ΩC/A → 0

(Hint: I/I2 ' C ⊗B I. Why?)

(iv) Show by example that the sequence can’t be completed by 0 → I/I2 on the left and
remain exact. (Hint: Consider A = k a field, B = k[x], and C = B/x2B = k[x]/(x2).)

25 Étale morphisms IV

25.1 Extensions of algebras

Definition 25.1.Extensions of algebras
mean square-zero

extensions. Thanks
Ryan.

Let A be a commutative ring, B a A-algebra, and J a B-module. An
A-algebra extension of B by J is a surjective homomorphism with square-zero kernel of A-
algebras B′ → B and an identification of the kernel of this surjection with J . A morphism
from an extension B′ to an extension B′′ is a homomorphism of A-algebras that induces

1This means that HomA-Alg(C,D) → HomA-Alg(B,D) is injective for any A-algebra D. This includes
surjections and localizations.
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the identity on J and induces the identity modulo J . In other words, it is a commutative
diagram:

0 // J // B′

��

// B // 0

0 // J // B′′ // B // 0

The isomorphism classes of A-algebra extensions of B by J are denoted ExalA(B, J).

Exercise 25.2. (i) Show that the automorphism group of B + εJ as an A-algebra ex-
tension of B is DerA(B, J). Conclude that A-algebra extensions can have nonzero
automorphisms.

(ii) Show that every morphism of A-algebra extensions is an isomorphism.

(iii) Construct a bijection between the isomorphisms B′ ' B + εJ and the A-algebra
sections of B′ → B.

Exercise 25.3. Let q : Ã→ B be a surjection.

(i) Find an identification between ExalÃ(B, J) and

HomÃ-Alg(IB/Ã, J) = HomB-Mod(B ⊗Ã IB/Ã, J).

(ii) Show that under this identification, the zero element corresponds to B′ = B+ εJ with

the Ã-algebra structure coming from the homomorphism q + 0ε. Show that, up to
isomorphism, this is the only Ã-algebra extension B′ → B that has a section by a
Ã-algebra homomorphism.

25.2 An algebraic characterization of étale morphisms

Definition 25.4. Suppose that B is an A-algebra. Let Ã→ B be a surjection of A-algebras,
where Ã is a polynomial ring over A. The (truncated) cotangent complex of B over A is the
2-term complex (with respect to this presentation) is the complex

B ⊗Ã IB/Ã
d−→ B ⊗Ã ΩÃ/A.

The map sends b⊗ f to b⊗ df . The truncated cotangent complex is denoted τ≥−1LB/A.

Exercise 25.5. Show that, up to quasi-isomorphism, τ≥−1LB/A is independent of Ã.

Theorem 25.6. A map of affine schemes SpecB → SpecA is étale if and only if

d : B ⊗Ã IB/Ã → B ⊗Ã ΩÃ/A

is an isomorphism.

Consider an extension problem in which C ′ is a square-zero extension of C by the ideal
J :

C Boo

~~

C ′

OO

Aoo

OO

(25.1)
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Exercise 25.7. Show that solving the lifting problem (25.1) is equivalent to solving the
lifting problem below, in which B′ = C ′ ×C B:

B B

~~

B′

OO

Aoo

OO

(25.2)

Exercise 25.8. Show thatB is formally étale overA if and only if DerA(B, J) = ExalA(B, J) =
0.

Exercise 25.9.Two typos corrected
here. The target of the

map is Exal
Ã

(B, J)
and the ideal is I

B/Ã
.

Thanks to Ryan for
catching them.

Let Ã→ B be any surjection. Construct a map

DerA(Ã, J)→ ExalÃ(B, J)

and identify it with the map

HomB-Mod(B ⊗Ã ΩÃ/A, J)→ HomB-Mod(B ⊗Ã IB/Ã, J). (25.3)

Exercise 25.10. (i) Suppose that Ã → B is a surjection of A-algebras. Construct a
commutative diagram in which the long row is exact and the morphism in the second
row is induced by d : B ⊗Ã IB/Ã → B ⊗Ã ΩÃ/A:

0 // DerA(B, J) // DerA(Ã, J)

o
��

// ExalÃ(B, J) //

o
��

ExalA(B, J)

Hom(B ⊗Ã ΩÃ/A, J) // Hom(B ⊗Ã IB/Ã, J)

(ii) Show that if Ã is a free A-algebra then the map

ExalÃ(B, J)→ ExalA(B, J)

is surjective.

(iii) Prove that

d : B ⊗Ã ΩÃ/A → B ⊗Ã IÃ/A

is an isomorphism if and only if B is formally étale over A.

25.3 A differential characterization of étale morphisms

Exercise 25.11. Let Ã = A[x1, . . . , xn] and let I = (f1, . . . , fm).

(i) Show that B ⊗Ã ΩÃ/A =
∑
Bdxi.

(ii) Show that B ⊗Ã I is generated by f1, . . . , fm.
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(iii) Show that the map ∑
Bfi → B ⊗Ã I → B ⊗Ã ΩÃ/A =

∑
Bdxi

is given by the following n×m matrix:

J =


∂f1
∂x1

· · · ∂fm
∂x1

...
. . .

...
∂f1
∂xn

· · · ∂fm
∂xn


(iv) Under the assumption m = n, conclude that d : B ⊗Ã I → B ⊗Ã ΩÃ/A is an isomor-

phism if and only if detJ ∈ B∗.

Exercise 25.12. Prove that Spec k[t, t−1]→ k[s, s−1], given by s 7→ tn, is étale if and only
if the characteristic of k does not divide n. (Hint: Identify k[t, t−1] = k[s, s−1, t]/(tn − s)
and use the differential criterion.)

C Bézout’s theorem

Theorem C.1. If C and D are algebraic curves in A2
k that meet transversally and do not

meet at infinity then |(C ∩D)(k)| = deg(C) deg(D) for any algebraically closed field k.

Consider the moduli space of all such polynomials, AN = SpecA where N =
(
d+2
d

)
+(

e+2
e

)
. Let X ⊂ AN×A2 be the locus of (f, g, p) such that f(p) = g(p) = 0. Let π : X → AN

be the projection.
Note that C = V (f) and D = V (g) meet transversally if and only if the fiber of X over

the map (f, g) : Spec k → AN is étale over Spec k.

Exercise C.2. If

f = (x− α1)(x− α2) · · · (x− αd)
g = (y − β1)(y − β2) · · · (y − βe)

then V (f, g) consists of de reduced points.

Exercise C.3. There is a non-empty open subset U of AN such that π−1U is étale over U .

Exercise C.4. Show that there is a non-empty open subset of AN over which X contains
no points at infinity. Show that X is proper over this open subset.

Exercise C.5. Conclude that there is an open subset U ⊂ AN containing the example
from Exercise C.2 such that p−1U is proper and étale over U .

Exercise C.6. Show that all geometric fibers of X over U have the same number of points.
(Hint: Let k be an algebraically closed field and consider a map h : Spec k[[t]] → U .
Construct a bijection between the closed fiber of h−1X and the set of points of the general
fiber with residue field k((t)) using the valuative criterion for properness and the formal
criterion for étale morphisms.)
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26 Smooth and unramified morphisms

Definition 26.1. A morphism of schemes f : X → Y is said to be formally unramified if
any infinitesimal lifting problem

S //

��

X

f

��

S′ //

>>

Y

has at most one solution. A morphsim that is formally unramified and locally of finite type
is said to be unramified.

Definition 26.2.This definition has
been changed! The

infinitesimal extension
is now required to be
affine. This definition

is equivalent to the one
given earlier, but to

prove the equivalence
requries cohomology.

A morphism of schemes f : X → Y is said to be formally smooth if any
infinitesimal lifting problem

S //

��

X

f

��

S′ // Y

has at least one solution when S′ is affine. A morphism that is both formally smooth and
locally of finite presentation is said to be smooth.

Exercise 26.3. Show that formally étale is the conjunction of formally smooth and formally
unramified. (Note: This is not completely trivial! You will have to glue some morphisms.)

Exercise 26.4. (i) Suppose that f : X → Y induces an injection between functors of
points. Show that f is unramified.

(ii) Conclude that locally closed embeddings are unramified.

(iii) Give an example of an unramified morphism that is not an injection on functors of
points. (Hint: Consider the map f : A1 → A2 given by f(x) = (t2 − 1, (t2 − 1)t).
Show that this is a closed embedding away from either of the points t = ±1.)

Exercise 26.5. (i) Show that An is smooth for all n ≥ 0.

(ii) Show that the base change of a smooth morphism is smooth.



Deformation theory

Suppose we have a sequence of homomorphisms of commutative rings A
f−→ B

g−→ C. We
saw earlier that there is an exact sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0.

One might be tempted to ask how this sequence can be extended on the left. It turns out
that it is easier to consider all C-modules J and the dual sequences

0 // Hom(ΩC/B , J) // Hom(ΩC/A, J) // Hom(C ⊗B ΩB/A, J)

0 // DerB(C, J) // DerA(C, J) // DerA(B, J)

Exercise 26.6. Show that this sequence can be continued to a 6-term sequence:

0→ DerB(C, J)→ DerA(C, J)→ DerA(B, J)→ ExalB(C, J)→ ExalA(C, J)→ ExalA(B, J)

Exercise 26.7. (i) Show that f is formally smooth if and only if ExalA(B, J) = 0 for all
J .

(ii) Show that g is formally unramified if and only if DerB(C, J) = 0 for all J .

(iii) Assume f is formally smooth and g is formally unramified. Show that gf is formally
étale if and only if

DerA(B, J)→ ExalB(C, J)

is an isomorphism.
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Part II

General properties of schemes
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Chapter 10

Dimension

27 Dimension of smooth schemes

27.1 The tangent bundle

Exercise 27.1. Suppose that A is a commutative ring and B is an A-algebra. Show that
the natural map

B[f−1]⊗B ΩB/A → ΩB[f−1]/A

is an isomorphism. (Hint: Consider the functors they represent.)

Exercise 27.2. Suppose A→ B is a homomorphism of commutative rings and let X → Y
be the associated morphism of affine schemes. For each principal open affine D(f) ⊂ SpecB,
define ΩX/Y (D(f)) = ΩB[f−1]/A. Show that ΩX/Y is a quasicoherent sheaf on X.

Exercise 27.3. Let f : X → Y be a morphism of schemes. Construct a quasicoherent
sheaf ΩX/Y on X such that if U ⊂ X and V ⊂ Y are open affines with U ⊂ f−1V we

have ΩX/Y
∣∣
U

= ΩU/V . (Hint: One strategy here is to glue together the constructions from

the previous exercise. Another is to construct d : OX → ΩX/Y as the universal f−1OY -
derivation. Still another is to take ΩX/Y = ∆−1(I /I 2) where ∆ : X → X ×Y X is the
inclusion of the diagonal.)

Exercise 27.4. Let S be a scheme and let J be a quasicoherent sheaf on S. Define
OS[J ](U) = OS(U) + εJ (U) for all open U ⊂ S.

(i) Show that OS[J ] is the structure sheaf of a scheme S[J ] whose underlying topological
space is the same as that of S.

(ii) Construct a closed embedding S → S[J ] and a canonical retraction S[J ]→ S.

When J = OS we also write S[ε].

Exercise 27.5. Let f : X → Y be a morphism of schemes. Define TX/Y (S) to be the set
of commutative diagrams

S[ε] //

��

X

f

��

S // Y
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where S[ε] → S is the retraction constructed in the last exercise. Show that TX/Y is
representable by V(ΩX/Y ).

The scheme TX/Y constructed in the last exercise is known as the relative tangent bundle
of X over Y .

27.2 Relative dimension

Theorem 27.6. Suppose that f : X → Y is smooth. Then TX/Y is a vector bundle.

Exercise 27.7. Suppose that B is a formally smooth A-algebra. Show that ΩB/A is pro-
jective as a B-module.

Definition 27.8. A sheaf F of OX -modules on a scheme X is said to be locally of finite
presentation if there is a cover of X by open subschemes U such that there is a presentation

O⊕nU → O⊕mU → F
∣∣
U
→ 0

with both m and n finite.

Exercise 27.9. Suppose that f : X → Y is locally of finite presentation. Show that ΩX/Y
is locally of finite presentation.

The following exercises will now complete the proof of Theorem 27.6.

Exercise 27.10 (Nakayama’s Lemma).Imperative if you
haven’t done it before.

Skip it if you have.

Suppose A is a local ring with residue field k and
maximal ideal m and M is a finitely generated A-module. Prove that the following conditions
are equivalent:

(i) M = 0

(ii) M = mM

(iii) M/mM = 0

(iv) M ⊗A k = 0

Exercise 27.11. (i) Prove that a finitely presented A-module M is locally free if and
only if Mp is free as an Ap-module for every prime p of A.

(ii) Prove that a finitely presented A-module M is projective if and only if Mp is projective
for every prime p of A. (Hint: Show that HomAp-Mod(Mp, Np) = HomA-Mod(M,N)p.
You will need the finite presentation for this.)

(iii) Prove that a finitely presented projective module over a local ring is free. (Hint:
Choose generators of M ⊗A k where k is the residue field. Lift these to M and use
Nakayama’s lemma to conclude that these generate M . Obtain a surjection An →M
that induces an isomorphism upon passage to the residue field. Let N ⊂ An be
the kernel. Use the fact that M is projective to get an isomorphism An ' N ×M .
Conclude that N ⊗A k = 0 and apply Nakayama’s lemma again.)

(iv) Prove that an A-module M of finite presentation is locally free if and only if it is
projective.

Definition 27.12. Suppose that f : X → Y is a smooth morphism of schemes. If TX/Y
has rank n then we say f is smooth of relative dimension n.
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27.3 The structure of smooth morphisms

Theorem 27.13. Suppose that π : X → Y is smooth of relative dimension n. Then there
is an cover of X by open subsets U such that U → Y factors as an étale map U → An

Y .

28 Dimension I

Reading 28.1. [AM69, Chapter 11], [Vak14, Chapter 11], [GD67, IV.0.16]

We introduce several approaches to the dimension of a commutative ring. The theory
works best in the case of a noetherian local ring, and we eventually define the dimension of
a non-local noetherian ring to be the maximum of the dimensions of its local rings.

28.1 Chevalley dimension

Definition 28.2. If A is a noetherian local ring, an ideal of definition of A is an ideal q
whose radical is the maximal ideal of A.

The Chevalley dimension of A is the minimal number of generators of an ideal of defi-
nition of A.

Exercise 28.3.Should be immediate. Show that the Chevalley dimension of a noetherian local ring A with
maximal ideal m is the minimal number of elements f1, . . . , fn of A such that V (f1, . . . , fn) =
{m}.

28.2 Artin–Rees lemma

This section follows [AM69, Chapter 11].

Definition 28.4. Let A be a commutative ring, I ⊂ A an ideal, and M an A-module. A
decreasing filtration of

M = F 0M ⊃ F 1M ⊃ F 2M ⊃ · · ·
is called an I-filtration if IFnM ⊂ Fn+1M for all n. It is called a stable I-filtration if
IFnM = Fn+1M for all n� 0.

We are really only interested in the filtration FnM = InM , but we run into an unfortu-
nate difficulty. If M ′ ⊂ M then InM ′ 6= M ′ ∩ InM . That is, we get a second filtration on
M ′ by setting FnM ′ = M ′ ∩ InM . The Artin–Rees lemma says that when A is noetherian
and M is finitely generated, these two filtrations aren’t that different.

Theorem 28.5 (Artin–Rees lemma). If A is noetherian and M is finitely generated, every
I-filtration F of M is stable.

Exercise 28.6. We will prove the Artin–Rees lemma using the Rees algebra B = A[tI] =∑∞
n=0 t

nIn and the modules N =
∑∞
n=0 t

nInM and N ′ =
∑∞
n=0 t

nFnM .

(i) Prove that the Rees algebra is noetherian if A is noetherian.

(ii) Prove that N ′ is a B-submodule of N and that N is a finitely generated B-module.
Conclude that N ′ is finitely generated.

(iii) Prove the Artin–Rees lemma. (Hint: Choose n such that all generators of N ′ have
degrees ≤ n.)
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28.3 Hilbert–Samuel dimension

Definition 28.7. Let A be a noetherian local ring and let M be an A-module. If

M = F 0M ) F 1M ) · · · ) FnM = 0.

is a maximal filtration of M , the number n is called the length of M and is denoted
length(M).

Exercise 28.8. Show that the length of M is the dimension (over the residue field) of the
graded module

gr(M) =

∞∑
k=0

mkM/mk+1M

where m is the maximal ideal of A. Conclude that the definition of the length does not
depend on the choice of filtration F .

Exercise 28.9. Show that the length is additive in short exact sequences: if

0→M ′ →M →M ′′ → 0

is exact then length(M) = length(M ′) + length(M ′′).

Definition 28.10 (Hilbert–Samuel function). Let A be a noetherian local ring and M an
A-module with a descending filtration F . The Hilbert–Samuel function associated to F is
h(M,F, n) = length(M/FnM). When F is the filtration associated to an ideal I, we write
h(M, I, n).

The Hilbert function turns out to be a polynomial:

Exercise 28.11. Let A be a noetherian local ring, m its maximal ideal, M a finitely
generated A-module, and F a descending m-filtration on M .

(i) Show that h(M,F, n) = h(grM,n) where grM =
∑
n≥0 F

nM/Fn+1M is the associ-
ated graded ring of M , filtered by degree.

(ii) Show that h(M,F, n) agrees with a polynomial for n� 0.

Definition 28.12. In view of Exercise 28.11, the Hilbert–Samuel function h(M,F, n) agrees
with a polynomial for large n. We call this polynomial the Hilbert–Samuel polynomial and
notate it P (M,F, n).

Exercise 28.13. Show that if q and p are ideals of definition of A then P (M, p) and P (M, q)
have the same degree.

Exercise 28.14. Let A be a noetherian local ring, q an ideal of definition, F a descending
q-stable filtration on a finitely generated A-module M . Show that P (M,F ) and P (M, q)
have the same degree and leading coefficient.

Definition 28.15. The Hilbert–Samuel dimension of A is the degree of P (A,m).

28.4 Krull dimension

Definition 28.16. The Krull dimension of A is the length of the longest chain of nontrivial
specializations in SpecA. Equivalently, it is the length of a maximal chain of prime ideals
in A.
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29 Dimension II

29.1 Equivalence

Theorem 29.1 (Krull–Chevalley–Samuel [GD67, Théorème (0.16.2.3)], [AM69, Theorem 11.4]).
If A is a noetherian local ring, the Krull dimension, the Hilbert–Samuel dimension, and the
Chevalley dimension are all the same.

Let δ(A) denote the Chevalley dimension, d(A) the degree of the Hilbert–Samuel poly-
nomial, and dim(A) the Krull dimension.

Exercise 29.2.Not essential, as this
follows from the

theorem and is not
needed to prove it.

But it’s good practice.

Show that the following statements are all equivalent (without using The-
orem 29.1):

(i) δ(A) = 0;

(ii) d(A) = 0;

(iii) dim(A) = 0;

(iv) m is nilpotent.

Exercise 29.3. Show that dim(A) ≤ d(A).

Exercise 29.4. Show that d(A) ≤ δ(A).

Exercise 29.5 ([Vak14, Proposition 11.2.13], [Eis91, Lemma I.3.3]). Let X = SpecA be an
affine scheme, let p1, . . . , pn points of X, and let I be an ideal of X with Z = V (I). Assume
that Z does not contain any of the pi. Then there is some f ∈ I such that f(pi) 6= 0 for all
i.

Exercise 29.6. Prove δ(A) ≤ dim(A).

29.2 Codimension

Definition 29.7 ([Vak14, §11.1.4]). The codimension of an irreducible closed subset Z of
a notherian scheme X is the dimension of the local ring at the generic point of Z.

Exercise 29.8 ([Vak14, Theorems 11.3.3, 11.3.7, §11.5]). Prove Krull’s Hauptidealsatz:
Let A be a noetherian local ring and f1, . . . , fn ∈ A. Show that codimX V (f1, . . . , fn) ≤ n.
(Hint: Use Chevalley dimension.)

Exercise 29.9. (i) Prove that for any noetherian local ring A and any prime ideal p ⊂ A
we have

dimA/p + dimAp ≤ dimA

(ii) Give an example of a noetherian local ring A and a prime ideal p ⊂ A such that

dimA/p + dimAp 6= dimA
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29.3 Examples

Exercise 29.10. Compute dim Spec Z.

Exercise 29.11. Let k be a field, let A = k[x1, . . . , xn], and let p ⊂ A be the ideal
(x1, . . . , xn)A. Compute dimAp. (Once we have proved the Nullstellensatz, this will be a
calculation of the dimension of An

k .)

Exercise 29.12. Compute dim An at a closed point.

Exercise 29.13. Suppose that X is a smooth scheme over a field k. Prove that dimX (at
any closed point) coincides with the rank of the tangent bundle TX/ Spec k.

29.4 Regularity

Definition 29.14. A noetherian local ring A with maximal ideal m is said to be regular if
dimm/m2 = dimA.

Exercise 29.15. Suppose that X is a smooth scheme over a field k. Show that the local
ring of X at any point is regular.

Exercise 29.16. Give an example of a regular scheme that is not smooth. (Hint: An
inseparable field extension.)

Exercise 29.17. Show that the rank of the tangent bundle of a smooth scheme over a field
coincides with the dimension of the scheme.
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Algebraic properties of schemes

30 Finite, quasi-finite, and integral morphisms

Definition 30.1. A morphism of schemes f : X → Y is said to be finite if there is a cover
of Y by open affine subschemes V = SpecA such that f−1V = SpecB with B finite as an
A-module.

Exercise 30.2.Reorganization of
definition. Should be

easy.

Show that f : X → Y is finite if and only if it is affine and f∗OX is a sheaf
of OY -modules of finite type.

Exercise 30.3.Trivial. Show that closed embeddings are finite morphisms.

Definition 30.4. A morphism of commutative rings A→ B is said to be a integral if every
element of B satisfies a monic polynomial with coefficients in A.1 A morphism of schemes
f : X → Y is said to be integral if there is a cover of Y by open subschemes V = SpecA
such that f−1V = SpecB where B is an integral extension of A.

Definition 30.5. A morphism of schemes is quasifinite if it is of finite type and has finite
fibers.

Exercise 30.6. (i) Show that finite morphisms are quasifinite.

(ii) Give an example of a quasifinite morphism that is not finite. (Hint: open embedding.)

Exercise 30.7 (Cayley–Hamilton theorem [Sta15, Tag 00DX]). Suppose A is a commutative
ring, M is a finitely generated A-module, and f is an endomorphism of M . Then f satisfies
an integral polynomial with coefficients in A. If M is free, this polynomial can be taken to
be the characteristic polynomial.

(i) Reduce to the case where M is free.

(ii) Reduce to the case where A is an integral domain.

(iii) Reduce to the case where A is a field and the characteristic polynomial splits into
linear factors.

1Note that integral morphisms of commutative rings are not necessarily injective. This confused me for
a long time.
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(iv) Show that M is a finite direct sum of generalized eigenspaces.2

(v) Show the theorem is true when f acts nilpotently on a vector space.

(vi) Conclude that the theorem is true for all the generalized eigenspaces ofM and therefore
for M itself.

Exercise 30.8 ([Sta15, Tag 02JJ]). Show that a morphism is finite if and only if it is
integral and of finite type.

Exercise 30.9. Give an example of an integral extension that is not free. (Hint: Normalize
a nodal or cuspidal plane curve.)

31 Integral morphisms and dimension

31.1 Lifting inclusions of primes

Exercise 31.1. Suppose A ⊂ B is an integral extension. Show that SpecB → SpecA is
surjective.

Exercise 31.2 ([AM69, Proposition 5.7]).This exercise can be
used in Exercise 31.3,

but so can Exercise ??,
which might be easier.

Let A ⊂ B be an integral extension of commu-
tative rings. Then A is a field if and only if B is a field.

Exercise 31.3 ([Vak14, Theorem 7.2.5]). Prove that specializations lift along integral mor-
phisms.

Exercise 31.4. Prove that integral morphisms are universally closed.

Exercise 31.5. Show that finite morphisms are proper.

Exercise 31.6 ([Vak14, Exercise 11.1.E]). Suppose f : X → Y is an integral extension.
Prove that dimX = dimY .

Exercise 31.7. Let k be a field. Prove that for any maximal ideal p of A = k[x1, . . . , xn],
we have dimAp = n. (Hint: Reduce to the case of an algebraically closed field k and use
the Nullstellenstaz.)

Theorem 31.8. (i) A morphism of schemes is integral if and only if it is both affine and
universally closed.

(ii) A morphism of schemes is finite if and only if it is both affine and proper.

Exercise 31.9 ([ano], [Sta15, Tag 01WM]). Prove the theorem using the following steps:

(i) Suppose ϕ : A → B is injective and the induced map SpecB → SpecA is closed and
f ∈ A is an element such that ϕ(f) ∈ B∗. Show that f ∈ A∗.

(ii) Suppose ϕ : A → B is an injection such that the induced map SpecB[t] → SpecA[t]
is closed. Then ϕ is integral.

(iii) Complete the proof of the theorem.

2The generalized ξ-eigenspace of M is the submodule N ⊂M containing all x ∈M annihilated by some
power of (f − ξid).
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31.2 Noether normalization

Theorem 31.10 (Noether normalization [Mum99, §I.1], [Vak14, 11.2.4]). Suppose k is a
field and B is an integral domain of finite type over k. Then there is a polynomial subring
A ⊂ B such that B is a finite extension of A (as a module).

Corollary 31.10.1. Suppose that B is an integral domain of finite type over a field k.
Let K be the field of fractions of B. For any maximal ideal p ⊂ B, the dimension dimBp

coincides with tr.degkK.

32 Chevalley’s theorem

Reading 32.1. [Vak14, §7.4],

Theorem 32.2. Let A be a noetherian integral domain, B an A-algebra of finite type, and
M is a B-module of finite type. There is a non-zero f ∈ A such that A[f−1] ⊗AM is free
as a A[f−1]-module.

Definition 32.3 ([GD71, Définition 0.2.3.1, 0.2.3.2, 0.2.3.10]). An open subset U of a
scheme X is said to be retrocompact if the inclusion U ⊂ X is quasicompact.

Let X be an affine scheme. A subset of X is called constructible if it can be constructed
using only the retrocompact open subsets of X and a finite process of intersections and
passages to complementary subsets.

A subset Z of a scheme X is said to be locally constructible if there is an cover of X by
affine open subschemes U such that the intersection Z ∩ U is a constructible subset of U .

Exercise 32.4. Show that an open subset of an affine scheme is retrocompact if and only
if it is the complement of a closed subscheme of finite presentation.

Exercise 32.5. Give an example of an open subset of an affine scheme that is not a
retrocompact open subset.

Exercise 32.6. Let f : X → Y be a morphism of schemes. Show that the pullback of a
constructible subset of Y to X is constructible.

Exercise 32.7. Show that a locally constructible subset of an affine scheme is constructible.

Exercise 32.8. Show that a subset of a noetherian scheme is constructible if and only if it
is a finite union of underlying subsets of locally closed subschemes.

Exercise 32.9. Let X be a scheme. For each open U ⊂ X, let S (U) be the collection of
all subsets of U and let C (U) be the set of all locally constructible subsets.

(i) Show that S is a sheaf and C is a subsheaf.

(ii) Show that C is the smallest subsheaf of S such that S (U) includes D(f) and V (f)
when U = SpecA and f ∈ A, and is stable under finite union and finite intersection.

Exercise 32.10. Show that a subset of an affine scheme X is constructible if and only if it
is a finite union of sets of the form U ∩V where U is a retrocompact open and V is a closed
subset of finite presentation.

Theorem 32.11. Let f : X → Y be a quasicompact morphism that is locally of finite
presentation and Z ⊂ X a constructible subset. Then f(Z) is a constructible subset of Y .
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32.1 A criterion for openness

Exercise 32.12. Show that a subset of an affine scheme X is constructible if and only if it
is the image of a morphism of finite presentation.

Exercise 32.13. Show that a locally constructible subset of a scheme X is open if and only
if it is stable under generization.

32.2 Nullstellensatz

Exercise 32.14 ([Vak14, 7.4.3]). Suppose that K is a field extension of k that is finitely
generated as a k-algebra. Show that K is finitely generated as a k-module.
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Flatness

33 Flatness I

Reading 33.1. [Vak14, Chapter 24], [Har77, §III.9]

Definition 33.2. Let A be a commutative ring. An A-module M is said to be flat if
N ⊗A M is an exact functor of N . An A-algebra B is said to be flat if it is flat as an
A-module.

Definition 33.3. A morphism of schemes f : X → Y is said to be flat if f∗ : QCoh(Y )→
QCoh(X) is an exact functor. More generally, a quasicoherent sheaf F on X is said to be
Y -flat if F ⊗OX

f∗G is an exact functor of G ∈ QCoh(Y ).1

Exercise 33.4. Show that f : X → Y is flat if and only if there are open charts by maps
SpecB → SpecA where B is a flat A-algebra.

Exercise 33.5 ([Har77, Proposition 9.2], [Vak14, Exercises 24.2.A, 24.2.C, 24.2.D, 24.2.E]).

(i) Show that open embeddings are flat.

(ii) Let k be a field. Show that all maps X → Spec k are flat.

(iii) Show that the base change of a flat map is flat.

(iv) Show that An
Y → Y is flat.

(v) Show that a composition of flat maps is flat.

33.1 Openness

Exercise 33.6. (i) Let f : X → Y be a flat morphism. Show that the image of f is
stable under generization.

(ii) Flat morphisms of finite presentation are open.

1These definitions can be made more generally for sheaves of OX -modules and OY -modules. The result
is equivalent for schemes.
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33.2 Generic flatness

Reading 33.7. [Vak14, §§24.5.8–24.5.13]

Theorem 33.8. Suppose f : X → Y is a morphism of finite type between noetherian
schemes with Y integral. Then there is a dense open subset of Y over which X is flat.

Exercise 33.9 (Flattening stratification). Under the assumption of the theorem, show that
there is a stratification of Y into locally closed subschemes Yi such that f−1Yi is flat over
Yi.

2

Exercise 33.10. Generalize the theorem to a quasicoherent sheaf of finite type on X.

33.3 Fiber dimension

Let f : X → Y be a morphism of schemes. The fiber of f over y ∈ Y is the scheme
f−1y = y ×Y X. We write dimxX = dimOX,x.

Theorem 33.11 ([Har77, Proposition 9.5]). Let f : X → Y be a flat morphism between
locally noetherian schemes. For any x ∈ X we have

dimxXy + dimf(x) Y = dimxX.

Exercise 33.12. (i) Give an example of a non-flat morphism of noetherian schemes
where the conclusion of the theorem fails.

Exercise 33.13. Prove the theorem:

(i) Show it is sufficient to assume Y = SpecA and X = SpecB and both A and B are
local rings.

(ii) Pick t ∈ A not contained in any minimal prime. Show that dimA/t = dimA− 1.

(iii) With t as above, show that f∗t is not contained in any minimal prime of B. (Hint:
Use the fact that the image of f is stable under generization, hence contains all generic
points of SpecA.)

(iv) Conclude that f−1V (t) ⊂ X has dimension dimX − 1.

(v) Use induction on dimY to deduce that dimX = dimY + dim f−1y.

Theorem 33.14. Let f : X → Y be a morphism of finite type between locally noetherian
schemes. Then dimXf(x) is an upper semicontinuous function of x ∈ X.

Exercise 33.15. Let f : X → Y be a proper morphism of locally noetherian schemes.
Show that fiber dimXy is an upper semicontinuous function of y ∈ Y .

Exercise 33.16. Eliminate the noetherian hypotheses in the second theorem.

33.4 Criteria for flatness

Reading 33.17. [Sta15, Tag 00MD], [Vak14, §24.6]

2This is weaker than the usual notion. Generally a flattening stratification is also required to be a
universal flattening [Sta15, Tag 052F].
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The homological criterion

Exercise 33.18. Let M be an A-module.

(i) Show that M ⊗A N is a right exact functor of N but is not exact in general.

(ii) Suppose that
0→ N ′ → N → N ′′ → 0 (33.1)

is an exact sequence. Show that

0→M ⊗A N ′ →M ⊗A N →M ⊗A N ′′ → 0

is exact if either M or N is projective.

(iii) Let N be any A-module and choose a surjection P0 → N where P is projective. Let
P1 be the kernel. Define TP1 to be the kernel of M ⊗A P1 →M ⊗A P0. Show that TP1
depends on P only up to canonical isomorphism.

(iv) Write Tor1(M,N) for the module constructed above. Show that there is an exact
sequence

Tor1(M,N ′)→ Tor1(M,N)→ Tor1(M,N ′′)→M⊗AN ′ →M⊗AN →M⊗AN ′′ → 0

associated to any exact sequence (33.1).

(v) Prove that Tor1(M,N) = 0 if either M or N is projective.

(vi) Prove that Tor1(M,N) = Tor1(N,M).

(vii) Prove that M is flat if and only if Tor1(M,N) = 0 for all A-modules N if and only if
Tor1(N,M) = 0 for all A-modules N .

Exercise 33.19. (i) Show that an A-module M is flat if and only if for every injection
of A-modules N ′ → N , the induced map

M ⊗A N ′ →M ⊗A N

is injective.

(ii) Show that in the previous condition, it is sufficient to assume N ′ and N are finitely
generated.

Exercise 33.20. Let M be a finitely generated A-module. Show M is flat if and only if
I ⊗AM → IM is a bijection for all ideals I ⊂ A.

The local criterion

Exercise 33.21. Show that M is flat if and only if Mp is flat over Ap for all prime ideals
p of A.

Theorem 33.22 ([Vak14, Theorem 24.6.1]). Suppose that A→ B is a local homomorphism
of noetherian local rings and M is a finitely generated B-module. Let k be the residue field
of A. Then M is A-flat if and only if TorA1 (M,k) = 0.
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It is clear that flatness of M implies TorA1 (M,k) = 0. We work on the converse. Assume
for the rest of the discussion that TorA1 (M,k) = 0.

Exercise 33.23. Show that TorA1 (M,N) = 0 if mnN = 0 for some positive integer n. (Hint:
Reduce to the case where mN = 0 using the long exact sequence, and then observe that
N ' k⊕r as an A-module in that case.)

Exercise 33.24. Use the Artin–Rees lemma to prove the following statements about mod-
ules over a noetherian local ring B with maximal ideal n:

(i) If P is a finitely generated B-module and Q is a submodule then Q ∩ nkP ⊂ nk−`Q
for some ` and all k � 0.

(ii) If P is a finitely generated B-module then
⋂

nkQ = 0.

The slicing criterion

Theorem 33.25 ([Vak14, Theorem 24.6.5]). Suppose A → B is a local homomorphism of
local rings and t is not a zero divisor in A. Then B/tB is flat over A/tA if and only if B
is flat over A and t is not a zero divisor in B.

Exercise 33.26. Prove the theorem:

(i) Suppose B is flat over A. Prove that t is not a zero divisor in B if and only if
TorA1 (B,A/tA) = 0.

(ii) Suppose B is flat over A. Show that B ⊗A A′ is flat over A′. Conclude that B/tA is
flat over A/tA.

(iii) Suppose that t is not a zero divisor in B. Show that TorA1 (k,B) = Tor
A/tA
1 (k,B/tB).

(iv) Prove the theorem.

The infinitesimal criterion

The equational criterion

33.5 Bézout’s theorem

In our proof of Bézout’s theorem in Section C, we showed that there was an open subset
U ⊂ AN such that p−1U is proper over U . By construction, X is affine over AN so p−1U
is both proper and affine, hence finite over U .

Exercise 33.27. Show that p−1U is flat over U .

Exercise 33.28. Show that a flat module that is of finite presentation is locally free.

Exercise 33.29. Conclude that dimk(q)Op−1(q) is independent of q ∈ U .

34 Flatness II

35 Flatness III
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Projective space

36 Group schemes and quotients

36.1 The multiplicative group

Reading 36.1. [Vak14, §6.6]

Definition 36.2. A group scheme is a scheme G, equipped with the structure of a group
on G(S) for every scheme S, such that G(S) → G(T ) is a group homomorphism whenever
T → S is a morphism of schemes.

Exercise 36.3. Define Gm(S) = Γ(S,O∗S). Show that Gm is representable by the scheme
A1 r {0} = Spec Z[t, t−1].

Exercise 36.4. (i) Show that the structure of a group scheme on SpecA induces a ho-
momorphisms of commutative rings:

(a) (comultiplication) ∆ : A→ A⊗A
(b) (antipode) ι : A→ A

(c) (counit) ε : A→ Z

corresponding to multiplication, inversion, and the identity element. (Note that ε can
also be viewed as a map from A into every commutative ring B.)

(ii) Translate the axioms of a group into identities satisfies by these maps. This structure
is called a Hopf algebra.

Exercise 36.5. Describe the Hopf algebra structure on Z[t, t−1] corresponding to the group
structure on Gm.

Definition 36.6. An action of a group scheme G on a scheme X is a morphism G×X → X
such that G(S)×X(S)→ X(S) is an action of G(S) on X(S) for all schemes S.

Exercise 36.7. Show that an action of Gm on an affine scheme X = SpecA corresponds
to a grading of A by Z.
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36.2 Graded rings and quotients

Let X = SpecA be an affine scheme with an action of Gm. This corresponds to a grading
of A by Z, as we saw in the last section.

Definition 36.8. Let G be an algebraic group acting on a scheme X. The fixed locus of
X is the functor XG ⊂ X consisting of all x ∈ X such that g.x = x for all g ∈ G. More
precisely, XG(S) is the set of all x ∈ X(S) such that for all S-schemes T and all g ∈ G(T )
we have g.x

∣∣
T

= x
∣∣
T

.

Exercise 36.9. Let Gm act on an affine scheme X = SpecA. Show that the fixed locus is
V (A+) where A+ is the ideal generated by elements of nonzero degree.

Definition 36.10. Let X be a scheme with an action of an algebraic group G. If it exists,
the initial G-morphism from X to a scheme on which G acts trivially is called the quotient
of X by G. It is denoted X/G if it exists.

Exercise 36.11. Let Gm act on X = SpecA. Show that the D(f), as f ranges among
homogeneous elements of A, form a basis for the Gm-invariants open subsets of X.

Exercise 36.12. Show that when an algebraic group G acts on X×G by g.(x, h) = (x, gh),
the quotient (X ×G)/G is X.

Theorem 36.13 ([MFK, Chapter 1, Theorem 1.1]). Suppose that Gm acts on an affine
scheme X = SpecA, corresponding to a grading A =

∑
An. Show that X/Gm exists and is

equal to SpecA0.1

Exercise 36.14. Let X = SpecA be an affine scheme with an action of Gm corresponding
to a grading A =

∑
An. Let X◦ ⊂ X be the complement of XG ⊂ X. Show that X◦/Gm

exists and is equal to ProjA:

(i) Show that Gm acts on X◦.

(ii) Show that D(f), for f ∈ A homogeneous of nonzero degree, form a basis for the
Gm-invariant open subsets of X◦.

(iii) Show that for each f ∈ A+, the quotientD(f)/Gm exists and is equal to SpecA[f−1]0 =
ProjA[f−1].

(iv) Construct a map X◦ → ProjA and show that it has the universal property of X/Gm.

37 Quasicoherent sheaves and graded modules

Reading 37.1. [Har77, §II.5]

Definition 37.2. Let A be a graded ring. A graded A-module is an A-module M that is
decomposed as a direct sum M =

∑
Mn with AmMn ⊂Mm+n for all m,n ∈ Z.

Exercise 37.3.This is essentially
equivalent to

Exercise 37.5. You
might want to regard
this exercise as a hint

for or a step in the
solution of that one.

Let A be a graded ring, corresponding to a comultiplication map µ∗ : A→
A[t, t−1]. Show that to give a grading on an A-module M is the same as to give a map
µ∗ : M → M [t, t−1] such that µ∗(fx) = µ∗(f)µ∗(x) for any f ∈ A and x ∈ M . Interpret

this geometrically as an isomorphism µ∗M̃ ' p∗M̃ where p : Gm × SpecA → SpecA and
µ : Gm × SpecA→ SpecA are, respectively, the projection and the action.

1This holds more generally for an action of a reductive group scheme.
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Exercise 37.4 (Flat base change for global sections). Consider a cartesian diagram of
schemes:

X ′
f
//

p′

��

Y ′

p

��

X
g
// Y

Assume that p is coherent (quasicompact and quasiseparated). Show that g∗p∗F = p′∗f
∗F

for any quasicoherent sheaf F on Y ′.

Exercise 37.5. Let X = SpecA and let Y = ProjA. Write π : X◦ → Y for the projection
and let j : X◦ → X be the inclusion. Suppose that F is a quasicoherent sheaf on Y . Show
that π∗F .

(i) Show that j∗π
∗F is a quasicoherent sheaf on X. Conclude that j∗π

∗F = M̃ for some
A-module M .

(ii) Show that M is naturally equipped with the structure of a graded A-module. (Hint:
Pull back via the projection p : Gm ×X → X and µ : Gm ×X → X and compare.)

Exercise 37.6. Suppose that A is a graded ring and M is a graded A-module. Let X =
SpecA, Y = ProjA, and let π : X◦ → Y be the projection. Let F be the sheaf on X
associated to M . Define G (U) = F (π−1U)0 for all open U ⊂ Y .

(i) Show that G is a sheaf on Y .

(ii) Suppose that F = j∗π
∗F ′ for a quasicoherent sheaf on Y . Construct a canonical

isomorphism G ' F ′.

Exercise 37.7. Let X = SpecA and let Y = ProjA. Assume that A+ is generated by
elements of degrees 1 and −1.

(i) Show that the category QCoh(Y ) is equivalent to the category of graded quasicoherent
sheaves of OX◦ -modules.

(ii) Show that the category QCoh(X◦) is equivalent to the category of objects F ∈
QCoh(X) such that F → j∗j

∗F is an isomorphism.

38 Line bundles and divisors

Reading 38.1. [GD67, IV.21], [Har77, II.6], [Vak14, Chapter 14]

Invertible sheaves are examples of quasicoherent sheaves, so we can use the classification
of quasicoherent sheaves on projective space to classify line bundles.

Exercise 38.2. Suppose that L and L ′ are invertible sheaves. Show that L ⊗L ′ and
Hom(L ,L ′) are invertible sheaves as well.2 Show that isomorphism classes of invertible
sheaves on a scheme X form an abelian group where addition is ⊗, difference is Hom, and
the zero element is OX .

2The notation Hom refers to the sheaf of homomorphisms.
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Exercise 38.3. Let A = Z[x0, . . . , xn] and X = SpecA and Y = ProjA. Construct an
equivalence of categories between the category of line bundles on Y and the category of
graded invertible sheaves on X◦.

We will have fully classified invertible sheaves on Pn when we show that

(1) a sheaf on X◦ is invertible if and only if j∗X
◦ is invertible, and

(2) all invertible sheaves on X = An+1 are trivial.

38.1 Cartier divisors

Definition 38.4 (Meromorphic functions). Let X be a scheme. Let MX be the sheaf
obtained by adjoining inverses to all nondivisors of zero in OX . This is known as the sheaf
of meromorphic functions on X. An invertible sheaf on X is called an invertible fractional
ideal if it can be embedded, as an OX -module, in MX .

Exercise 38.5. Show that there is an injection OX →M ∗
X .

Definition 38.6 (Cartier divisors). Let DivX = M ∗
X/O∗X . This is known as the sheaf

of Cartier divisors on X. If f is a section of MX , the associated divisor is denoted (f).
Divisors associated to meromorphic functions are called principal.

Exercise 38.7. Suppose that X = SpecA and A is a unique factorization domain. Show
that the map

Γ(X,M ∗
X)→ Γ(X,DivX)

is a surjection.

Exercise 38.8. Suppose that X is an integral scheme with generic point η. Show that
MX(U) = k(η) for all nonempty U ⊂ X.

Exercise 38.9. Let D be a divisor on X (an element of Γ(X,DivX)).

Exercise 38.10. Suppose that D and E are Cartier divisors. We say that D ≥ E if
D − E = (f) for some f ∈ OX . Show that this gives DivX the structure of a sheaf of
partially ordered groups. Let Div+

X be the subsheaf of divisors D ∈ DivX such that D ≥ 0.

Exercise 38.11. Let D be a divisor on X. Let OX(D) be the set of f ∈ MX such that
(f) ≥ −D.

(i) Show that OX(D) is an invertible sheaf on X.

(ii) Show that this gives a map

Γ(X,DivX)→ Pic(X).

(iii) Show that the image of this map consists of all equivalence classes of invertible frac-
tional ideals of X.

Exercise 38.12. Suppose that X is an integral scheme. Show that every invertible sheaf
is isomorphic to an invertible fractional ideal. Conclude that there is an isomorphism:

Γ(X,DivX)/Γ(X,M ∗
X) ' Pic(X)
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38.2 Weil divisors

Let X be a locally noetherian scheme and x ∈ X a point. We say that x has codimension
1 in X if dimOX,x = 1.

Definition 38.13 (Weil divisor). Suppose X is noetherian. A Weil divisor on X is a formal
sum of codimension 1 points of X. The abelian group of Weil divisors is denoted Z1(X).

Let D ≥ 0 be a Cartier divisor on X. Then OX(−D) ⊂ OX so it is an ideal. It therefore
defines a closed subscheme V (OX(−D)). Furthermore, it defines a Weil divisor: For each
codimension 1 point x ∈ X, set

cx(D) = lengthOX,x/OX,x(−D).

Exercise 38.14. Show that cx(D) = 0 for all but finitely many points x ∈ X. Conclude
that c(D) =

∑
cx(D)[x] is a Weil divisor of X.

Exercise 38.15. Show that cx(D + E) = cx(D) + cx(E). Conclude that cx extends to
homomorphisms defined on Div(X)→ Z and c extends to Div(X)→ Z1(X).

Exercise 38.16 ([GD67, Théorème (IV.21.6.9)]). An element of Z1(X) is called locally
principal if is locally c([f ]) for some f ∈MX . Show that Div(X)→ Z1(X) is injective and
its image consists of the locally principal cycles.

38.3 The Picard group of projective space

Exercise 38.17. Let A be a graded ring and let X = SpecA and Y = ProjA. If M is an
A-module, define M(n)k = M(n+ k).

(i) Show that A(n) is an invertible sheaf on ProjA for all n ∈ Z. This sheaf is denoted
OY (n). We write F (n) = F ⊗OY

OY (n).

(ii) Show that Γ(Y,F (n)) = Mn whenever M̃ = j∗π
∗F .

Exercise 38.18. Let A = Z[x0, . . . , xn] and let X = SpecA = An+1 and Y = ProjA = Pn.
Show that a quasicoherent sheaf L on Y is invertible if and only if π∗L is invertible if and
only if j∗π

∗L is invertible.3

Exercise 38.19. Prove that Pic An = 0.

Exercise 38.20. Prove directly that Pic(An r {0}) = 0. This gives another solution to
Exercise 38.18.

Exercise 38.21. Prove that Pic Pn = Z with 1 ∈ Z corresponding to O(1).

3This calculation also works over a field. With small modification, it even works over an arbitrary base
ring replacing Z.
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Chapter 14

Sheaf cohomology

39 Divisors

40 Sheaves III

40.1 Injective resolutions

Definition 40.1. Let X be a scheme.1 A sheaf of OX -modules I is said to be injective if
HomOX -Mod(F ,I ) is an exact functor of F .

Exercise 40.2.Should be easy, but it’s
important to know and
understand why this is

true

Show that I is injective if and only if, for every injection of sheaves of
OX -modules F ′ → F , the map Hom(F ,I )→ Hom(F ′,I ) is surjective.

Theorem 40.3 (Grothendieck [Gro57, Théorème 1.10.1]). Every sheaf of OX-modules can
be embedded in an injective module.

The proof uses a few facts about the category of OX -modules:

(i) the category is abelian: it has kernels, cokernels, and images that behave as we are
accustomed;

(ii) the category has a set of generators: every object is a quotient of a direct sum of OU
for U ⊂ X open;

(iii) arbitrary (small) colimits exist and filtered colimits are exact.

The proof is known as the ‘small object argument’. The idea is that if we have a witness
F ′ ⊂ F to the failure of injectivity of a sheaf I then we pushout:

F ′ //

��

F

I

Iterating this process enough, we get an injective module. The details of the proof will be
a series of exercises, following [Gro57, §1.10].

1or, really, a ringed space
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Exercise 40.4. Show that the category of sheaves of OX -modules has a generator.2 (Hint:
Take the direct sum of all OU , with U ranging among open subsets of X.)

Exercise 40.5. Let G be the generator. Show that I is injective if and only if, for every
subobject G ′ ⊂ G , every morphism G ′ → I extends to G → I .

Exercise 40.6. Fix F . For each successor ordinal n + 1, let Fn+1 be the pushout of the
diagram below: ∑

G ′⊂G G ′ ×Hom(G ′,Fn) //

��

∑
G ′⊂G G ×Hom(G ′,Gn)

Fn

When n is a limit ordinal, let Fn = lim−→m<n
Fm. Show that Fn is injective for large n.

40.2 Flaccid sheaves

Definition 40.7. A sheaf I is said to be flaccid if

I (U)→ I (V )

is surjective for all open V ⊂ U .

Exercise 40.8. Show that injective sheaves are flaccid.

Exercise 40.9. Suppose that

0→ A → B → C → 0

is exact and A is flaccid.

(i) Show that

0→ Γ(X,A )→ Γ(X,B)→ Γ(X,C )→ 0

is exact.

(ii) Show that B is flaccid if and only if C is flaccid.

40.3 Cohomology as a derived functor

Definition 40.10. Let F be a sheaf of OX -modules. Choose an embedding F ⊂ I where
I is a flaccid OX -module. Define

H1(X,F ) = Γ(X,I /F )/Γ(X,I )

Hn(X,F ) = Hn−1(X,I /F ) for n ≥ 2.

2A generator is an object A such that an injection B → C is an isomorphism if and only if the induced
map Hom(A,B)→ Hom(A,C) is an isomorphism.
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40.4 Torsors

Definition 40.11 (Torsor). Let G be a sheaf of groups on X. A G -torsor is a sheaf of sets
P, equipped with an action of G , such that there is a cover of X by open subsets U such
that P

∣∣
U

is isomorphic to G
∣∣
U

as a sheaf on U with G
∣∣
U

-action.
A G -torsor is said to be trivial if it is isomorphic to G as a sheaf of G -sets. Define

H1(X,G ) to be the set of isomorphism classes of G -torsors on X.

Exercise 40.12. Show that a G -torsor P is trivial if and only if Γ(X,P) 6= ∅.

Exercise 40.13. Suppose that G is a flaccid sheaf of groups. Show that every G -torsor is
trivial.

Exercise 40.14. Suppose that G acts on a sheaf of sets P.

(i) Show that there is an exact sequence

0→ Γ(X,G )→ Γ(X,P)→ Γ(X,P/G )→ H1(X,G ).

(Hint: Given a section σ ∈ Γ(X,P/G ), consider its preimage in P.)

(ii) Show that the last arrow is surjective if P is flaccid.

Exercise 40.15. Prove that our two definitions of H1(X,G ) coincide when G is a sheaf of
abelian groups.

Exercise 40.16. Show that the sheaf of isomorphisms between two G -torsors is nat-
urally equipped with the structure of a G -torsor by (g.f)(x) = g.(f(x)). Show that
[Q]− [P] = [Hom(P,Q)] in the additive structure of H1(X,G ) induced from the derived
functor construction.

40.5 Line bundles

Exercise 40.17. Construct an equivalence of categories between the category of line bundles
on a scheme X and the category of torsors on X under the group Gm.

41 Čech cohomology

Exercise 41.1. Let F be a sheaf of abelian groups on X. For each open U ⊂ X, define
H pF (U) = Hp(U,F ).

(i) Show that H pF is naturally a presheaf on X. (Hint: The restriction of a flaccid
sheaf to an open subset is still flaccid, and restriction of sheaves is exact.)

(ii) Show that the sheafification of H pF is the zero sheaf for all p > 0.

Definition 41.2. For each n, let Un be the set of all symbols U1∧· · ·∧Un. Define Cp(U,F )
to be the set of functions σ on Un with

σ(U1 ∧ · · · ∧ Un) ∈ F (U1 ∩ · · · ∩ Un)

σ(Uf(1) ∧ · · · ∧ Uf(n)) = sgn(f)σ(U1 ∧ · · · ∧ Un).
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These are the Čech p-cochains. Define a coboundary map

Cp(U,F )→ Cp+1(U,F )

by defining d(σ)(U1 ∧ · · · ∧Up+1) =
∑

(−1)iσU1,...,Ûi,...,Up+1

∣∣
U1∩···∩Up+1

. The cohomology of

this complex is called the Čech cohomology of F with respect to U and is denotedH∗(U,F ).3

Exercise 41.3. (i) Construct a map H1(U,G )→ H1(X,G ).

(ii) Show that the image consists of all G -torsors P such that P
∣∣
U

trivial for all U in U.

(iii) Conclude that Ȟ1(X,G ) = H1(X,G ) for all sheaves of groups G on X.

Exercise 41.4. Suppose that I is a flaccid sheaf. Show that Hp(U,I ) = 0 for all p > 0.
(Hint: Realize the Čech complex as the global sections of an exact sequence of sheaves.)
Conclude that Čech cohomology agrees with sheaf cohomology for flaccid sheaves.

41.1 Affine schemes

Exercise 41.5. Prove H1(X,G ) = 0 for all quasicoherent sheaves G on all affine scheme
X.

Soon we will see that Hn(X,G ) = 0 for n > 0 and all quasicoherent sheaves G on all
affine schemes X.

Exercise 41.6. Prove that the Čech complex is exact for any quasicoherent sheaf on an
affine scheme and any cover by distinguished open affines. Conclude that Ȟn(X,F ) = 0
for all n > 0 when X is affine and F is quasicoherent.

3The Čech cohomology is defined by taking a colimit of H∗(U,F ) over all covers, ordered by refinement.
In order for this to make sense and be a filtered colimit, it is best to define a cover to be a choice of open
neighborhood of each point.



Chapter 15

Lines on a cubic surface

42 Čech cohomology II

42.1 The Čech spectral sequence

Exercise 42.1.Should be simple Suppose I is a flaccid sheaf on X. Show that I
∣∣
U

is also flaccid, for all
open U ⊂ X.

Let F be a sheaf on X and let I • be a flaccid resolution of F . Fix a cover U of X and
write C•(U,F ) for the Čech complex of F . We can form a double complex :

C•(U,I •)

If we compute the cohomology first with respect to C•, we get Γ(X,I •), whose cohomology
is Hq(X,F ). If we compute it first with respect to the I • differential, we get a complex
whose (p, q)-entry is ∏

U1,...,Up∈U

Hq(U1 ∩ · · · ∩ Up,F
∣∣
U1∩···∩Up

).

In particular, we find the Čech cohomology as the q = 0 column. Suppose that Hq(U1 ∩
· · · ∩Up,F ) = 0 for all p and all q > 0. Then everything vanishes but the Čech cohomology
with respect to U.

Exercise 42.2. Suppose that E is a double complex in the first quadrant. Assume that for
all p > 0 we have Hp,•E = 0 and that for all q > 0 we have H•,qE = 0. (In other words, the
columns and rows are all exact, except in degree 0.) Conclude that HpH0,•E = HpH•,0E
(in a natural way) for all p.

Theorem 42.3 ([Gro57, Théorème 3.8.1]). Suppose U is a cover of X and Hq(U1 ∩ · · · ∩
Up,F ) = 0 for all p, q > 0 and all U1, . . . , Up ∈ U. Then Čech cohomology of F agrees with
derived functor cohomology.

A more careful analysis of the proof of the exercise above gives a refinement of this
theorem. Observe that to get an isomorphism

Hp(U,F ) ' Hp(X,F )
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we needed the following vanishing:

H1(U1 ∩ · · · ∩ Up,F ) = 0

H1(U1 ∩ · · · ∩ Up−1,F ) = H2(U1 ∩ · · · ∩ Up−1,F ) = 0

H2(U1 ∩ · · · ∩ Up−2,F ) = H3(U1 ∩ · · · ∩ Up−2,F ) = 0

...

for all U1, . . . , Uk ∈ U. In particular, we can make the following conclusion:

Theorem 42.4. If Hi(U1 ∩ · · · ∩ Uq,F ) = 0 for i+ q + 1 ≤ p and i > 0 then

Hp(U,F ) = Hp(X,F ).

Corollary 42.4.1. The cohomology of a quasicoherent sheaf on an affine scheme is trivial
in positive degrees.

Corollary 42.4.2. The Čech cohomology of a quasicoherent sheaf with respect to an affine
cover of a separated scheme agrees with the derived functor cohomology.

42.2 Cohomology and dimension

Theorem 42.5 ([Gro57, Théorm̀e 3.6.5], [Har77, Theorem III.2.7]). Let X be a noetherian
topological space of dimension n. Show that Hp(X,F ) = 0 for all sheaves of abelian groups
F on X and all p > 0.

Exercise 42.6. Assume the result holds for all closed subsets of X other than X itself.

(i) Show that the result holds when X is irreducible and F = ZU for some open U ⊂ X.

(ii) Show that the result holds when X is irreducible and F is a quotient of ZU for some
open U ⊂ X.

(iii) Show that the result holds when X is irreducible and F is finitely generated.

(iv) Show that the result holds when X is irreducible.

(v) Show that the result holds for all X.

42.3 Cohomology of invertible sheaves on projective space

Exercise 42.7. Compute Hp(P1,OP1) for all p.

Exercise 42.8. Compute Hp(P1,OP1(n)) for all integers n and p. (Hint: There is a map
O(n)→ O(n+ 1) by ‘multiplication by x’.)

Exercise 42.9. Repeat the above calculation for P2 and then for all Pn. (Hint: There
should be an induction on n going on here. You’ll have to compute the cohomology of OPn

by hand, though.)
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Recall that quasicoherent sheaves on Pn are equivalent to graded modules on An+1 such
that if j : An+1r{0} → An+1 is the inclusion then we have F → j∗j

∗F is an isomorphism.
We compute the derived functors of this inclusion. Under this equivalence, global sections
on Pn correspond to Γ(An+1,F )0. Regarding F = M̃ for some graded module M , we form
the following resolution:

0→M →
∏

1≤i≤n

Mxi
→

∏
1≤i<j≤n

Mxixj
→ · · · →Mx0···xn

→ 0.

43 Čech cohomology III

44 Lines on a cubic surface

For any scheme S, let G(S) be the set of lines in P3. Equivalently, G(S) is the set of
equivalence classes of 2-dimension vector subspaces V ⊂ A4

S . This is the Grassmannian.

Exercise 44.1. Show that Grass(k, n) is proper. (Hint: Use the valuative criterion. For
the existence part, let R be a valuation ring with field of fractions K. Represent an element
of Grass(k, n)(K) by an k × n matrix with entries in R such that not all k × k minors
are zero. Multiply by the inverse of the k × k-submatrix whose determinant has minimal
valuation. Argue that the result has entries in R.)

Suppose that V ⊂ A4
S represents a line. This gives an embedding

PSV → P4
S

where PSV is the space of lines in the rank 2 vector bundle V over S. Indeed, any 1-
dimensional subspace of PSV is also a 1-dimensional subspace of A4

S . If we choose an
isomorphism V ' A2

S then we get an isomorphism PSV ' P1
S .

This construction has an inverse: If we have a closed embedding of S-schemes f : P ⊂ P3
S

then it is given by a tuple (L , x0, . . . , x3) with the xi generating L . Let π : P → S be the
projection. Then x0, . . . , x3 give a map O4

S → π∗L . If P is isomorphic to P1
S locally in S

and L is locally isomorphic to OP1
S
(1) then π∗L is a locally free sheaf of rank 2 on S. If

we show the map O4
S → π∗L is surjective then V(π∗L ) → V(O4

S) ' P3
S will be a closed

embedding.
To see that O4

S → π∗L is a surjection, it is sufficient to treat the case when S is a point.
(A morphism of finite rank vector bundles that is a surjection fiberwise is a surjection,
by Nakayama’s lemma.) Now this corresponds to a degree 1 morphism of graded modules
k[x, y]→ k[x, y] that is surjective modulo x and modulo y. It follows that the image contains
both x and y so it is surjective on global sections.

Exercise 44.2. Let H(S) be the set of closed embeddings of S-schemes f : P ⊂ Pn
S

such that locally in S, we have P ' Pk
S and f∗OPn

S
(1) = OPk

S
(1). Prove that H '

Grass(k + 1, n+ 1).

Let Y = AN be the space of all homogeneous cubics in 4 variables. Let X be the functor
with X(S) equal to the set of pairs (p, L) where p is a homogeneous cubic in 4 variables, and
L is family of lines in P3 parameterized by S such that L lies on the cubic surface defined by
p. If we view p as a morphism A4

S → A1
S and L as a 2-dimensional linear subspace V ⊂ A4

S

then the condition defining X is p(V ) = 0.
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Exercise 44.3. (i) Show that X is representable by a scheme.

(ii) Show that X is proper over Y . (Hint: Make use of the properness of the Grassman-
nian.)

Exercise 44.4. Give an example of a non-smooth cubic surface. Show that the number of
lines on a non-smooth cubic surface does not have to be the same as the number of lines on
a smooth cubic surface.

Let Z(S) be the set of pairs (p, x) where p is a homogeneous cubic and x is a point of
the cubic surface defined by p. In other words, Z(S) consists of p : A4

S → A1
S and x is

represented by a 1-dimensional subspace W ⊂ A4
S with p(W ) = 0. Let Z0 ⊂ Z be the set

of all points (p, x) such that Z is not smooth over Y at x.

Exercise 44.5. (i) Show that Z fails to be smooth at (p, x) if and only if p′(x) = 0. (You
might need to work locally in Z to make sense of this condition.)

(ii) Conclude that Z0 ⊂ Z is closed.

(iii) Conclude that the p ∈ Y defining smooth cubic surfaces form an open subset, denoted
Y ◦ ⊂ Y .

Let X◦ be the preimage of Y ◦. Points of X◦ correspond to lines on smooth cubic surfaces.

Exercise 44.6. Let X ′ be a cubic surface over S′ and L ⊂ X a line. Suppose that S ⊂ S′
is a square-zero extension with ideal J and π : X → S is the restriction of X ′ to S. Let
τ : L → S be the restriction of π. Show that there is an obstruction to extending L to a
line L′ ⊂ X ′ over S′ lying in Ext1

OL
(I /I 2, π∗J) and that extensions are parameterized by

HomOL
(I /I 2, τ∗J).

Exercise 44.7. With notation as in the last exercise, show that I /I 2 = OL(1).

Exercise 44.8. Prove that Exti(I /I 2, τ∗J) = 0 for i = 0, 1. (Suggestion: The case where
S = Spec k and J = k is all we really need, so feel free to do just that.)
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Chapter 16

Deformation theory

45 Formal functions

46 Locally trivial deformation problems

46.1 Deforming morphisms to a smooth scheme

46.2 Deforming smooth schemes

46.3 Deforming vector bundles

47 Homogeneous functors and Schlessinger’s criteria

D Lines on a cubic surface

48 Divisors and line bundles

49 Associated points and the field of fractions

Reading 49.1. [Vak14, §5.5], [Eis91, §3.1]

Every integral domain can be embedded in a field, but not every commutative ring
can. We will see that there is a replacement for the field of fractions, called the total ring
of fractions, obtained by localizing the ring at its associated primes, or equivalently by
inverting all nondivisors of zero. The only associated prime of an integral domain is the
zero ideal, so the total ring of fractions recovers the field of fractions in this case.

Definition 49.2. Let A be a commutative ring and M an A-module. For any subset
S ⊂ M , the annihilator1 of S in A is the set of all a ∈ A such that ax = 0. It is denoted
Ann(S).

1The French use the more evocative assassin.
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Definition 49.3. Let A be a noetherian ring and let M be a finitely generated A-module.2

A prime p of A is said to be associated to M if there is an injection of A-modules A/p→M .
The set of primes assocated to M is denoted Ass(M).

Exercise 49.4.Should be quick and
easy and not worth

writing down.

Show that p is associated to M if and only if there is some x ∈ M such
that AnnA(x) = p.

Exercise 49.5 ([Vak14, Exercise 5.5.J], [Eis91, Proposition 3.4]). Consider the collection
of all proper ideals of A that are annihilators of elements of M , ordered by inclusion. Show
that the maximal elements of this collection are associated primes of M .

Exercise 49.6 ([Vak14, Exercise 5.5.K]). Show that M →
∏

p∈Ass(M)Mp is injective.

Exercise 49.7. Show that the union of the associated primes of a noetherian commutative
ring A is the set of zero divisors of A.3

Exercise 49.8. Let A be a commutative noetherian ring, M an A-module, and f ∈ A.
Show that AssAf

Mf = D(f) ∩AssAM .

49.1 Normalization

49.2 Intuition from topology

Let k be a field. Fix a k-vector space V . The set of 1-dimensional subspaces of V is denoted
P(V ). When V = kN+1 we also write kPN . This notation is usually only employed when
k = R or k = C.

Every non-zero vector in V spans a 1-dimensional subspace. This gives a surjection
V r {0} → PV . Two vectors span the same 1-dimensional subspace if and only if one is a
non-zero multiple of the other. That is, we get a bijection

(V r {0})/k∗ ' PV

where (V r {0})/k∗ is the set of orbits of the group k∗ acting on V r {0}.
When V has a topology (for example k = R or k = C) this allows us to put a topology

on PV . However, this doesn’t explain why this topology is natural.
Suppose W ⊂ V has codimension 1 and let W ′ be the translate of W by a vector not in

W . We obtain a map W 'W ′ → PV . Its complement is the natural inclusion PW ⊂ PV .

Exercise 49.9. Show that, when k = R or k = C, the inclusions W ⊂ PV constructed
above are open embeddings and that they cover PV .

We can weaken the assumption that V be a vector space in this construction, at least
when k = R or k = C. What we really need is for V to be an cone. That is V should carry
a continuous action of the multiplicative monoid k. The vertex of V is 0.V .

Exercise 49.10. The vertex of V is the same as the fixed locus of k∗.

Exercise 49.11. There is a continuous retraction V → 0.V sending v to limλ→0 λv. (Note
we are assuming k = R or k = C here.)

Define PV to be the set of lines in V , equivariant closed embeddings k → V .

2The definition makes sense even when A is not noetherian and M is not finitely generated. It is less
clear how useful the definition is in this generality, however.

3By a zero divisor, we mean an element a ∈ A such that there is a nonzero b ∈ A with ab = 0.
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49.3 Cones in algebraic geometry

49.4 Line bundles

If PV is supposed to be the space of lines in the vector space V then a map X → PV
should be a family of lines in V parameterized by X. In this section, we make sense of what
a “family of lines” is supposed to be.

We give several definitions of a line bundle over a scheme. The first will be familiar to
those with background in differential geometry.

Exercise 49.12. Show that the functor A 7→ GLr(A) is representable by an affine scheme.
(Hint: Show Matm×n is representable by an affine scheme and then construct GLr as an
principal affine open subscheme of Matr×r.)

Definition 49.13. A map X×An → X×Am is linear if it is of the form (x, t) 7→ (x, λ(x)t)
where λ : X → Matm×n(r) is a morphism of schemes.

Exercise 49.14. Give an equivalent definition of linearity for a map SpecA × An →
SpecA×Am in terms of the homomorphism of commutative rings

A[t1, . . . , tm]→ A[t1, . . . , tn].

Definition 49.15 (Line bundles via charts). A line bundle on a scheme X is a scheme L
and a projection π : L→ X, together with a cover of X by affine open subschemes U ⊂ X
and isomorphisms φU : π−1U ' X ×A1 such that the transition maps

(U ∩ V )×A1
φU

∣∣
U∩V←−−−−− π−1(U ∩ V )

φV

∣∣
U∩V−−−−−→ (U ∩ V )×A1

are linear.

Definition 49.16 (Line bundles via the functor of points). A line bundle on a scheme X is
a scheme L over X with an action of A1 on the fibers of L over X that is locally isomorphic
in X to the action of A1 on itself.

Exercise 49.17. Show that these two definitions of line bundles are equivalent.

Reading 49.18. [Vak14, §§5.4, 9.7]

Definition 49.19. Let A → B be an injective homomorphism of commutative rings. We
say that A is integrally closed in B if every x ∈ B that satisfies a monic polynomial with
coefficients in A lies in A.

Definition 49.20. A scheme X is said to be normal if for all x ∈ X, the local ring OX,x
is an integrally closed domain.

49.5 Torsors under the multiplicative group

Definition 49.21 (Torsor). Let G be an algebraic group. A G-torsor over a scheme X is
a G-action on an X-scheme P such that there is a cover of X by open subschemes U ⊂ X
such that P

∣∣
U

is isomorphic to GU as a G-scheme.
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Exercise 49.22. (i) Suppose that L is a line bundle on X. Define Φ(L) = Isom(L,A1
X)

to be the sheaf whose value on U ⊂ X is the set of isomorphisms L ' A1
U . Show that

Isom(L,A1
X) is a Gm-torsor.

(ii) Suppose that P is a Gm-torsor on X. Define Ψ(P ) = Hom(P,A1
X) to be the sheaf

whose value on U ⊂ X is the set of Gm-equivariant morphisms P
∣∣
U
→ A1

U . Show

that Hom(P,P1
X).

(iii) Show that Φ and Ψ define inverse equivalences of categories between the category of
Gm-torsors and the category of line bundles on X.

50 Quasicoherent sheaves on projective space

E Chow’s lemma

51 Morphisms to projective space

51.1 Blowing up

51.2 A criterion for closed embeddings

51.3 Ample line bundles

51.4 Another proof of Noether normalization

In this section we will find a more geometric construction of Noether normalization. This
yields a slightly less general version of the theorem, but it is just as good for practical
purposes.

Exercise 51.1. (i) Let S be a scheme and suppose that M is a m × n matrix with
coefficients in Γ(S,OS) such that for every point ξ ∈ S the matrix M(ξ) has rank m.
Construct a morphism of S-schemes Pm

S → Pn
S sending (L , x) to (L , xM).

(ii) What goes wrong in the previous part when rankM < m?

(iii) More generally, suppose that M is an m × n matrix as above. Let U ⊂ Pm
S be the

subfunctor consisting of all (L , x) ∈ Pm
S such that xM generates L. Show that the

formula above gives a map U → Pn
S .

(iv) Show that U is open in Pm
S .

Exercise 51.2. Let k be a field, p ∈ Pn
k , and H ⊂ Pn

k a hyperplane. We make the
following construction precise: For any point q ∈ Pn

k r{p}, there is a unique line connecting
p and q, denoted L(p, q). This line intersects H in a unique point, hence determines a map
Pn
k r {p} → Pn−1

k .

(i) First we explain what we mean by a hyperplane. Fix a linear equation f(x0, . . . , xn).
For any k-scheme S, we let H(S) be the set of all (L , x0, . . . , xn) ∈ Pn

k (S) (here L
is an invertible sheaf on S and xi ∈ Γ(S,L ) generate L ) such that f(x0, . . . , xn) = 0
as an element of L . Show that H is representable by a closed subscheme of Pn

k and
that H ' Pn−1

k .
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(ii) Suppose that p and q are two disjoint S-points of Pn
k . Show that there is a unique

linear map g : P1
S → Pn

k such that g(0) = p and g(∞) = q. (Here 0 is the S-point
(OS , 0, 1) ∈ P1

S(S) and ∞ is the S-point (OS , 1, 0) ∈ P1
S(S). ‘Linear’ means that the

map must be of the form (L , x0, x1) 7→ (L , g(x0, x1)) where g is a linear function.)

(iii) Let g and H be as in the last two parts. Show that g−1H consists of a single S-point
of P1

S .

Exercise 51.3. Let X = SpecB and assume that f : X → An
k is a finite map that is not

surjective. We construct a finite map X → An−1
k .

(i) Embed An
k ⊂ Pn

k by the map sending (x1, . . . , xn) to (O, 1, x1, . . . , xn). Show that
there is a finite map f : X → Pn

k such that f−1An
k = X and f

∣∣
X

= f . (Hint: Take
the ‘integral closure’ of Pn

k in X.) (Suggestion: You may want to skip this part of the
problem, since it is not necessary to prove Noether normalization if you set up your
induction carefully.)

(ii) Choose a point p ∈ Pn
k not on H or X.
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