Theorem 1 (Chevalley). Let $\varphi : A \to B$ be a homomorphism of rings making *B* finitely presented over *A* and let *Z* be a constructible subset of Spec *B*. Then $\varphi^*(Z)$ is a constructible subset of Spec *A*.

- 1. Show that it is sufficient to assume B = A[x].
- 2. Show that it is sufficient to assume $Z = V(f_1, \ldots, f_n) \cap D(g)$ for some $f_1, \ldots, f_n, g \in B$.
- 3. Show that it is sufficient to assume that the f_i all have leading coefficient 1. (Hint: Using induction on the degree of the f_i and on n. Let a be the leading coefficient of one of the f_i . Then Spec $A = D(a) \cup V(a)$.)
- 4. Show that it is sufficient to assume n = 1. (Hint: Induct on the degree of the f_i . Replace f_i by $f_i hf_j$ for suitably chosen i and $j \neq i$ and $h \in B$.)
- 5. Prove that $\varphi^{*-1}(p)$ is nonempty if and only if g is not nilpotent in Spec $\mathbf{k}(p)[x]/f(x)$.
- 6. Let d be the degree of f. Prove that if g is nilpotent in Spec $\mathbf{k}(p)[x]/f(x)$ then $g^d = 0$. (Hint: represent multiplication by g as a matrix.)
- 7. Conclude that $\varphi^{*-1}(p)$ is nonempty if and only if $g^d = 0$ in Spec $\mathbf{k}(p)[x]/f(x)$.
- 8. Show that the set of points $p \in \operatorname{Spec} A$ such that $g^d = 0$ in $\varphi^{*-1}(p)$ is closed in Spec A. Conclude that $\varphi^*(V(f) \cap D(g))$ is open.

Theorem 2. Suppose that K is a field and L is a field extension of K that is finitely presented over K as a ring. Then L is an algebraic extension of K.

- 9. Suppose $x \in L$. Use this to construct a map $\operatorname{Spec} L \to \operatorname{Spec} K[x]$.
- 10. Show that the image of this map is constructible. Conclude that the image of Spec L is in Spec K[x] is a *closed* point.
- 11. Deduce the theorem.

Theorem 3. Let K be a field and let V be a closed subset of Spec $K[x_1, \ldots, x_n]$. Let \overline{K} be an algebraic closure of K. If $V(\overline{K}) = \emptyset$ then $V = \emptyset$.

12. Prove this theorem from the last one.

Theorem 4. Let K be a field and let I be an ideal of $K[x_1, \ldots, x_n]$. Let Z be the set of points ξ in \overline{K}^n such that $f(\xi) = 0$ for all $f \in I$. Let J be the set of $f \in K[x_1, \ldots, x_n]$ such that f(Z) = 0. Then $J = \sqrt{I}$.

- 13. Let g be an element of J. Show that $V(I) \cap D(J)$ has no \overline{K} -points. Conclude that $V(I) \cap D(J) = \emptyset$.
- 14. Deduce that g is nilpotent in $K[x_1, \ldots, x_n]/I$.
- 15. Prove that $\sqrt{I} = J$.