1 Descent data

Definition 1. A homomorphism of commutative rings $A \to B$ is called *faith-fully flat* if B is flat as an A-module and Spec $B \to$ Spec A is surjective.

Theorem 2. A homomorphism of commutative rings $A \rightarrow B$ is faithfully flat if and only if a sequence of A-modules (1)

$$M' \to M \to M'',\tag{1}$$

is exact if and only if the induced sequence of B-modules (2)

$$B \otimes_A M' \to B \otimes_A M \to B \otimes_A M'' \tag{2}$$

is exact.

Let B be an A-algebra. Set $B_0 = B$ and $B_n = B \otimes_A B_{n-1}$ for all integers $n \ge 1$. If $[n] = \{0, 1, \ldots, n\}$ denotes a finite set with n + 1 elements then any function $[n] \to [m]$ induces an A-algebra homomorphism $B_n \to B_m$.

Definition 3. A descent datum for B over A consists of B_n -modules M_n for every integer $n \ge 0$ and homomorphisms $M_n \to M_m$ for every function $[n] \to [m]$ such that the induced maps (3)

$$B_m \otimes_{B_n} M_n \to M_m \tag{3}$$

are isomorphisms. The descent datum is denoted M_{\bullet} .

A morphism of descent data from M_{\bullet} to N_{\bullet} consists of homomorphisms of B_n -modules $M_n \to N_n$ for every $n \ge 0$ such that the diagrams (??) commute:

The category of descent data is denoted B_{\bullet} -Mod.

- **Lemma 4.** (i) Any descent datum M_{\bullet} for B over A is determined up to unique isomorphism by M_0 and M_1 and the homomorphisms between them.
- (ii) Once M_0 , M_1 , and M_2 have been specified, along with the maps between them, there is a unique way of extending them to a descent datum for B over A.

Lemma 5. Suppose that M is an A-module. For each n, set $M_n = B_n \otimes_A M$. Then M_{\bullet} is a descent datum. This determines a functor:

$$\Phi: A-\mathbf{Mod} \to B_{\bullet}-\mathbf{Mod}: M \mapsto B_{\bullet} \otimes_A M \tag{4}$$

Lemma 6. Suppose that M_{\bullet} is a descent datum. Let v_0 and v_1 denote the two maps $M_0 \to M_1$ and set $M = \ker(v_0 - v_1)$. Then M is an A-module. This determines a functor:

$$\Psi: B_{\bullet}\text{-}\mathbf{Mod} \to A\text{-}\mathbf{Mod}: M_{\bullet} \mapsto \ker(v_0 - v_1) \tag{5}$$

Lemma 7. Suppose that there is a homomorphism of A-algebras $B \to A$. Then A-Mod and B-Mod are equivalent.

Theorem 8. Let B be a faithfully flat A-algebra. Then the category of descent data for B over A is equivalent to the category of A-modules.

Lemma 9. Every field extension is faithfully flat.

2 Galois theory

Suppose that K is a field and L is an extension of K. Define L_{\bullet} and L_{\bullet} -Mod as in the last section.

Definition 10. Let A be a commutative ring. A A-algebra B is said to be *split* if it is isomorphic to a finite product of copies of A.

If K is a field and L is a finite extension of K then L is called *separable* if there is a field extension $\overline{K} \supset K$ such that $L \otimes_K \overline{K}$ is a split \overline{K} -algebra. The field \overline{K} is called a *splitting field* of L.

A finite field extension $L \supset K$ is said to be *Galois* if it is separable and is a splitting field for itself.

Lemma 11. Let L be a finite extension of a field K. Then $\overline{K} \supset K$ is a splitting field for L if and only if the minimal polynomial of each element of L splits into distinct linear factors over K.

Lemma 12. Let L be a finite Galois extension of K. The set of K-algebra homomorphisms from L to itself is a group, called the Galois group of L over K.

Suppose that L is a Galois extension of K with Galois group G. Let A be a K-algebra. The set $X = \text{Hom}_K(A, L)$ of K-algebra homomorphisms from A to L has an action of G, by g.f(x) = g(f(x)) for all $g \in G$, all $f \in X$, and all $x \in A$.

Theorem 13 (Galois theory). There is a contravariant equivalence of categories between L-split finite K-algebras and G-sets sending a K-algebra A to $\operatorname{Hom}_{K}(A, L)$.

The goal of this section is to prove this theorem using faithfully flat descent. First we should see how it implies the usual statement of Galois theory:

Lemma 14. Under the equivalence of Theorem 13, the K-algebra K corresponds to the trivial action of G on a 1-point set. The K-algebra L corresponds to the action of G on itself.

Corollary 14.1. Still using the notation of Theorem 13, the intermediate fields of $K \subset L$ correspond to the transitive G-sets, which correspond to the subgroups of G.

2.1 Split algebras and sets

Notation 15. If A is a ring and X is a set, A^X denotes the ring of functions from X to A.

Lemma 16. Let K be a field and let L be a split K-algebra. Let X be the set of K-algebra homomorphisms from L to K. Then there is a natural isomorphism

$$L \xrightarrow{\sim} K^X$$

Corollary 16.1. The category of split K-algebras is contravariantly equivalent to the category of sets.

Corollary 16.2. Let K be a field and let L be a separable K-algebra. Let \overline{K} be a splitting field of L. Then there is a natural isomorphism

$$L \otimes_K \overline{K} \xrightarrow{\sim} \overline{K}^X$$

Corollary 16.3. If K is a field and L is a Galois extension of K. Then there is a natural isomorphism

$$L \otimes_K L \xrightarrow{\sim} L^G$$

where G is the group of K-automorphisms of L.

The action of $G \times G$ on $L \otimes_K L$ by $(g,h).(x \otimes y) = (g.x) \otimes (g.y)$ goes over to the action sending $(x_t)_{t \in G}$ to $(h.x_{tq^{-1}})_{t \in G}$.

Likewise, there is a natural isomorphism

$$L \otimes_K L \otimes_K L \simeq L^{G \times G}$$

Definition 17. Let L be a Galois extension of K, with Galois group G. A G-L vector space is an L-vector space V with a linear action of G intertwining the action on L. That is:

- (i) For all $g \in G$, all $\lambda \in L$, and all $x \in V$ we have $g_{\cdot}(\lambda x) = (g_{\cdot}\lambda)(g_{\cdot}x)$.
- (ii) For all $g \in G$ and all $x, y \in V$, we have g(x + y) = g(x + g).

A (commutative) G-L-algebra is a G-L-vector space A together with a G-L-vector space homomorphism $\mu : A \otimes_L A \to A$ that makes A into a commutative ring.

A finite dimensional *G*-*L*-algebra is *L*-split if its underlying *L*-algebra is split.

Lemma 18. The category of L-split G-L-algebras is anti-equivalent to the category of G-sets.

2.2 Galois descent

For the whole section, K is a field and L is a Galois extension of K with Galois group G.

Lemma 19. The category of descent data, L_{\bullet} -Mod, is equivalent to the category G-L vector spaces.

Corollary 19.1. The category of G-L-vector spaces is equivalent to the category of K-vector spaces. The inverse equivalences send a K-vector space V to $L \otimes_K V$ and a G-L vector space W to its G-invariant subspace W^G .

Corollary 19.2. The category of K-algebras is equivalent to the category of G-L-algebras.

Corollary 19.3. The category of L-split K-algebras is equivalent to the category of L-split G-L-algebras, which is equivalent to the category of G-sets.

Corollary 19.4. There is a one-to-one correspondence between the K-subalgebras of L, the L-split G-L-subalgebras of L^G , and the subgroups of G.