- 1) Let p and q be distinct odd primes. Let $U_p = (\mathbb{Z}/p\mathbb{Z})^*$, let $U_q = (\mathbb{Z}/q\mathbb{Z})^*$, and let $U_{pq} = (\mathbb{Z}/pq\mathbb{Z})^*$.
 - (a) Prove that $U_{pq} \simeq U_p \times U_q$ via the map $\pi(x) = (x \mod p, x \mod q)$.
 - (b) Let $V = \{(1,1), (-1,-1)\} \subset U_p \times U_q$. Prove that the following are coset representatives for V in U:

$$A = \left\{ (a,b) \mid 0 \le a \le \frac{p-1}{2}, \ 0 \le b \le q-1 \right\}$$
$$B = \left\{ (a,b) \mid 0 \le a \le p-1, \ 0 \le b \le \frac{q-1}{2} \right\}$$
$$C = \left\{ (a,b) \mid a = c \mod p, \ b = c \mod q, \ 0 \le c \le \frac{pq-1}{2} \right\}$$

(c) Define

$$\alpha = \prod_{(a,b)\in A} (a,b) \qquad \beta = \prod_{(a,b)\in B} (a,b) \qquad \gamma = \prod_{(a,b)\in C} (a,b).$$

Prove that $\pm \alpha = \pm \beta = \pm \gamma$. (This part should use a little bit of group theory.)

(d) Prove the following formulas (*p* is still an odd prime):

$$(p-1)! \equiv -1 \pmod{p}$$

 $\left(\frac{p-1}{2}\right)!^2 \equiv -(-1)^{\frac{p-1}{2}} \equiv -(-1/p) \pmod{p}$

(Recall that $(a/p) = a^{\frac{p-1}{2}}$ is the *Legendre symbol*, introduced in class.) The first of these congruences is called *Wilson's theorem*. You may want to prove the second formula using the first one.

(e) Prove the following formulas (this is just calculation):

$$\alpha = \left((-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{-1}{q}\right), \left(\frac{-1}{p}\right) \right)$$
$$\beta = \left(\left(\frac{-1}{q}\right), \left(-1\right)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{-1}{p}\right) \right)$$
$$\gamma = \left((-p/q), (-q/p) \right)$$

(f) Compute α/β , β/γ , and α/γ and deduce

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

This is Gauß's "Golden Theorem", quadratic reciprocity. The proof outlined here is due to G. Rousseau [J. Austral. Math. Soc. (Series A) 51 (1991), 423–425], with slight modifications from N. Snyder [math-overflow].

- 2) Let ω be a primitive third root of unity (e.g., $\omega = e^{2\pi i/3}$).
 - (a) $(deleted)^1$
 - (b) Prove that $\mathbb{Z}[\omega]$ is a principal ideal domain.
 - (c) Let $\overline{\omega} = \omega^2 = -\omega 1$. For any *a* and *b* in \mathbb{Z} , define $\overline{a + b\omega} = a + b\overline{\omega}$ (this is just complex conjugation) and define $N(x) = x\overline{x}$. Prove that an element *x* of $\mathbb{Z}[\omega]$ is prime if and only if N(x) is prime.
 - (d) Show that $x^2 + x + 1 = 0$ has a solution in \mathbb{F}_p if and only if $p \equiv 1 \pmod{3}$ or p = 3. (Hint: If $x^2 + x + 1 = 0$ then $x^3 1 = 0$. Show that the homomorphism of groups $\varphi(x) = x^3$ from \mathbb{F}_p to itself has nontrivial kernel if and only if $p \equiv 1 \pmod{3}$. Be careful about p = 2 and p = 3.)
 - (e) Suppose p is a prime in \mathbb{Z} . Show that p splits as $q\overline{q}$ in $\mathbb{Z}[\omega]$ if and only if $p \equiv 1 \pmod{3}$. Show that p is prime in $\mathbb{Z}[\omega]$ if and only if $p \equiv 2 \pmod{3}$. Show that $3\mathbb{Z}[\omega] = (1-\omega)^2\mathbb{Z}[\omega]$.

 $^{^1\}mathrm{The}$ previous statement of this problem was incorrect. Thanks to Daniel for pointing this out.