1. Let G be a group and let G° be its *opposite*: As a set $G^{\circ} = G$. We write g° for the element of G° corresponding to $g \in G$. The multiplication law in G° is¹

$$g^{\circ}h^{\circ} = (hg)^{\circ}.$$

Prove that, for all groups G, the group G° is isomorphic to G. (Warning: The map $G \to G^{\circ}$ sending g to g° is not an isomorphism in general!)

¹Please note: The formula has been corrected. Previously it was written $g^{\circ}h^{\circ} = hg$. Thanks to Shen for the correction.