
Math 52 – Spring 2012

Assignment #9

Problem 1. In this problem we will compute the gravitational force field asso-
ciated to some regions of non-constant density.

(a) At up to a constant multiple, the gravitational field associated to a point
of mass m at position (x, y, z) is

F (x0, y0, z0) = m
(x− x0

r3
,
y − y0
r3

,
z − z0
r3

)
.

where r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. Show that for any closed
surface S containing (x, y, z) we have∫

S

F (x0, y0, z0) · (dy0 dz0, dz0 dx0, dx0 dy0) = 4πm.

Electrical field is also an inverse square field, so it behaves in exactly the
same way.

(b) Suppose that a closed surface S contains point P1, . . . , Pn of massesm1, . . . ,mn.
Relate ∫

S

F (x0, y0, z0) · (dy0 dz0, dz0 dx0, dx0 dy0)

to the total mass
∑n
i=1mi inside the region.

(c) Demonstrate that for any nice vector field F ,

div(F )(x0, y0, z0) = lim
r→0

∫
Sr

F · n dA

where Sr is a sphere of radius r around the point (x0, y0, z0) and n is a unit
normal vector to the surface of the sphere (pointing away from (x, y, z)),
and dA is infinitesimal surface area on the sphere.

(d) Suppose R is a 3-dimensional region of non-uniform density ρ (that is,
ρ(x, y, z) is the density of R at the point (x, y, z)). Using (a), give a
volume integral depending on (x0, y0, z0) whose value is the gravitational
force experienced by a point with coordinates (x0, y0, z0). This is a vector
field on 3-dimensional space whose value at (x0, y0, z0) will be denoted by
F (x0, y0, z0).

(e) Compute div(F ). (Use part (c).)

(f) Suppose that R is a region of total mass m contained in a sphere S. If
(x0, y0, z0) is a point outside of S, write down an iterated integral for
F (x0, y0, z0). Do not under any circumstances evaluate this integral.
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(g) Use symmetry to determine which direction the field F (x0, y0, z0) from
part (f) is pointing when R is spherically symmetric. (Hint: your answer
should involve the center of mass of R.)

(h) Use the divergence theorem and (g) to evaluate F (x0, y0, z0) without doing
the iterated integral.

(i) Suppose that R is a “3-dimensional annulus”, given by the equation 1 ≤
x2 + y2 + z2 ≤ 4, with constant density ρ = 1. What is F (x0, y0, z0) if
(x0, y0, z0) is contained inside the sphere of radius 1? (This should be
pretty direct from your calculation in part (f).)

Problem 2. In the last problem we saw that divergence is related to the limit
of a surface integral. Formulate a similar statement relating curl to a path
integral.

Problem 3. Using Green’s theorem, we have seen that it is possible to compute
the area of a 2-dimensional region in R2 as a line integral

∫
C
x dy around the

boundary.

(a) Is it possible to compute the volume of a region R as a surface integral
over its boundary? If so, say what the integrand is; if not, say why not.

(b) Is it possible to compute the surface area of a surface in 3-dimensional
space as an integral around its boundary? If so, say what the integrand
is; if not, say why not.

Problem 4. (a) Suppose a string of length 1 is cut at one place, chosen
uniformly at random along the string. What is the expected length of the
shorter piece of string that results?

(b) Suppose a string of length 1 is cut at two places, chosen uniformly at
random. What is the expected length of the piece of string of intermediate
length? (Actually computing the integrals involved here isn’t hard, but it
might take some time. You’ll get all of the benefit of this problem just by
setting up the integrals.)

Problem 5. Differential forms in 3-variables are sums and products symbols
of the form df , where f is a (nice) function. Here are the rules for manipulating
differential forms:

df dg = −dg df
(df)2 = 0 (this actually comes from the line above)

d(fg) = f dg + g df

df = grad(f) · (dx, dy, dz).

(a) Using the rules above, show that curl(F ) · (dy dz, dz dx, dx dy) = d(F ·
(dx, dy, dz)) for any (nice) vector field F .
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(b) Show that div(F · (dx, dy, dz)) = div(F ) dx dy dz.

Problem 6. Let F be the vector field

F(x, y, z) =
( x
r3
,
y

r3
,
z

r3

)
where r =

√
x2 + y2 + z2. Define vector fields

G1 = F(x, y, z − 1)

G2 = F(x, y, z − 3)

G = G1 + G2.

Notice that G1 is F shifted by (0, 0, 1) and G2 is F shifted by (0, 0, 3).

(a) Let Q be the disc described by the inequality x2+y2 ≤ 1 and the equation
z = 0, with its orientation nQ pointing in the direction of the positive z-
axis. Compute

∫
Q
G · nQ dA (where dA is infinitesimal surface area).

(b) Let R be the piece of the paraboloid z = 2 − 2(x2 + y2) ≥ 0. Compute∫
R
G · nR dA, where nR is the unit normal vector of R with positive z-

component and dA is infinitesimal surface area. (Hint: compute
∫
Q+R

G ·
n dA and then use your answer from the last part.)

(c) Let S be the piece of the paraboloid z = 4−4(x2+y2) ≥ 0 with orientation
nS having positive z-component. Compute

∫
S
G · n dA.

Problem 7. Suppose a toothpick is dropped at random so that its center lies
inside a square region R. Assume that the sides of R and the toothpick both
have length 1. Let (x, y) represent the coordinates where the center of the
toothpick falls, and let θ represent the angle that the toothpick makes with a
horizontal line through its center.

(a) If θ is a fixed value, describe all possible positions where the center of the
toothpick could land so that the entire toothpick is inside the rectangle.
It may help to do a few examples, like θ = 0, θ = π

3 , θ = π
4 , etc. to get a

feeling for this question.

(b) Let P be the 3-dimensional region representaing all possible outcomes
(x, y, θ) with the center of the toothpick in P . Let Q denote the 3-
dimensional region (in coordinates, (x, y, θ)) representing the positions
and angles where the toothpick crosses the boundary of R. Find E(Q|P ).

(c) What is the probability that the toothpick does not cross the boundary?

Problem 8. Suppose that F is a vector field in 3-dimensional space that is nice
(meaning its components have all partial derivatives of all orders) at all points
except on the lines x− y = z − 1 = 0 and x+ y = z + 1 = 0. Assume that

(i) curl(F) = 0,
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(ii)
∫
C
F · dr = 4 when C is the curve with parameterization,

x(t) = 0

y(t) = cos(t) 0 ≤ t ≤ 2π

z(t) = sin(t) + 1,

(iii)
∫
D
F · dr = −1 when D is the curve with parameterization

x(t) = 3 cos(t)

y(t) = 3 sin(t) 0 ≤ t ≤ 2π

z(t) = 0.

Compute
∫
E
F · dr where E is the curve

x(t) = cos(t)

y(t) = 0 0 ≤ t ≤ 2π

z(t) = sin(t)− 1.
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