Math 52 -Spring 2012

Assignment #5

Problem 1. §14.2, #16

Problem 2. §14.1, #11–14

Problem 3. §14.1, #20

Problem 4. §14.1, #36 (here **r** is the vector field whose value at the point with coordinates (x, y, z) is the vector (x, y, z))

Problem 5. Demonstrate the following identities:

- (a) If f is a nice function (meaning you can take arbitrarily many derivatives of it) in 3 variables, then $\operatorname{curl}(\operatorname{grad} f) = 0$.
- (b) If F is a vector field in 3 dimensions whose components are nice functions (in the same sense), then div(curl(F)) = 0.

Problem 6. Which of the following vector fields are gradients of differentiable functions? Give the function or give a reason why the function is not a gradient.

- (a) F(x,y) = (2x,3y)
- (b) $F(x, y, z) = (y^3, y^2, y)$
- (c) $F(x,y) = (e^x y, e^x)$

(d) (extra credit)
$$F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

Could the following function be the curl of a vector field:

(e)
$$F(x, y, z) = (y^3, y^2, y)$$
?

Problem 7. Suppose that T is a coordinate transformation from \mathbb{R}^2 (with coordinates u and v) to a surface S in \mathbb{R}^3 (with coordinates x, y, and z) such that

- (i) $T(u,0) = (u^2, 3u + 2, 1)$ and
- (*ii*) $T(0, v) = (v^3 v^2, 2, v + 1).$

Compute $|J_T(0,0)|$.

Problem 8. We now have two different coordinate systems on (the surface of) a sphere of radius 1:

(i) in the spherical coordinate system, the coordinates are (θ, ϕ) , which correspond to the point on the sphere with

$$x = \cos(\theta)\sin(\phi)$$
 $y = \sin(\theta)\sin(\phi)$ $z = \cos(\phi);$

(ii) in the stereographic coordinate system, the coordinates are (u, v), which correspond to the point on the sphere with

$$x = \frac{2u}{u^2 + v^2 + 1}$$
 $y = \frac{2v}{u^2 + v^2 + 1}$ $z = \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}.$

- (a) Find a formula for the stereographic coordinates in terms of (x, y, z). (This is the inverse of the transformation T you found in Problem 6 of last week's homework.)
- (b) Suppose that a point of the sphere has spherical coordiantes (θ, ϕ) . Find its stereographic coordinates.
- (c) The line v = 0 corresponds to a curve C on the surface of the sphere. Describe this curve and draw a sketch of it on the surface of the sphere.
- (d) The line u + v = 1 corresponds to another curve C' on the surface of the sphere. Sketch this one too.
- (e) Transform the curve C into spherical coordinates and draw the corresponding curve on axes labelled θ and ϕ . (Hint: this curve will have several pieces.)
- (f) Find the spherical coordinates of the intersection points of C and C'. (Hint: there are two such points.)