Assignment #1

Problem 1. Let f(x,y) = xy and let $R = [0,2] \times [0,2]$. Let P be the partition of R into four squares having length 1 on each side.

- (a) Draw a picture of R and P. In each of the four pieces of the partition P, label the points where f takes its smallest and largest values. (It may make your answer easier to read if you avoid overlapping labels by drawing separate pictures of the pieces of P.)
- (b) Compute the upper and lower bounds for $\int_R f \, dA$ associated to Riemann sums with this partition.

Problem 2. §13.1, #18

Problem 3. §13.1, #30

Problem 4. §13.6, #2

Problem 5. §13.2, #6

Problem 6. §13.2, #18

Problem 7. Evaluate the following iterated integral:

$$\int_{-1}^{0} \int_{-\sqrt{y+1}}^{0} \sqrt{\frac{x^3}{3} - x} \, dx \, dy.$$

For a hint (that may or may not actually be helpful), see the first few lines of the Wikipedia entry on elliptic integrals.

Problem 8. Let R be the region bounded by the lines y = x + 1, y = 0, and y = 1 - x. Express $\int_{R} f \, dA$

- (a) as an iterated integral of the form $\iint f(x,y) dx dy$, and
- (b) as an iterated integral of the form $\iint f(x,y) \, dy \, dx$.

(Your job is to supply the limits of the integrals.) It is okay to give your answer(s) as a sum of iterated integrals.

Problem 9. §13.6, #10

Problem 10. Let R be the region in the plane described by the inequalities

- (i) $x^2 + y^2 \le 4$
- (ii) $x \ge 0$, and
- (iii) $y \ge 0$.

Let $f(x, y) = x^2 + y^2$.

- (a) Draw a picture of R.
- (b) Draw a picture of R subdivided into the following four regions:
 - (i) S_1 consists of all points in R such that $0 \le \theta \le \frac{\pi}{8}$ in polar coordinates,
 - (ii) S_2 consists of all points in R such that $\frac{\pi}{8} \le \theta \le \frac{\pi}{4}$ in polar coordinates,
 - (iii) S_3 consists of all points in R such that $\frac{\pi}{4} \le \theta \le \frac{3\pi}{8}$ in polar coordinates,
 - (iv) S_4 consists of all points in R such that $\frac{3\pi}{8} \le \theta \le \frac{\pi}{2}$ in polar coordinates.

Compute the upper and lower bounds for $\int_R f(x, y) dA$ associated to this partition of R.

- (c) Draw a picture of R subdivided into the following four regions:
 - (i) T_1 consists of all points in R such that $0 \le r \le \frac{1}{2}$ in polar coordinates,
 - (ii) T_2 consists of all points in R such that $\frac{1}{2} \leq r \leq 1$ in polar coordinates,
 - (iii) T_3 consists of all points in R such that $1 \le r \le \frac{3}{2}$ in polar coordinates, and
 - (iv) T_4 consists of all points in R such that $\frac{3}{2} \leq r \leq 2$ in polar coordinates.

Compute the upper and lower bounds for $\int_R f(x, y) dA$ associated to this partition of R.

- (d) Which partition gives a better estimate of $\int_R f(x, y) dA$? Give a conceptual reason why one partition works better than the other.
- (e) (extra credit) Evaluate the integral $\int_B f \, dA$ exactly.