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Problem 1. (8 points) Let C be the path

x(t) = cos(2πt)

y(t) = sin(2πt)

z(t) = t

Compute the length of the path traversed as t increases from 0 to 1.

Solution. We have

dx

dt
= −2π sin(2πt) = −2πy

dy

dt
= 2π cos(2πt) = 2πx

dz

dt
= 1

(dx
dt

)2
+
(dy
dt

)2
+
(dz
dt

)2
= 8π2 + 1

The arc length is∫ 1

t=0

√(dx
dt

)2
+
(dy
dt

)2
+
(dz
dt

)2
dt =

∫ 1

t=0

√
4π2 sin(2πt)2 + 4π2 cos(2πt)2 + 1 dt

=
√

4π2 + 1.
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Problem 2. (10 points) Let R be the square defined by the inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Let
f(x, y) = x+ y − 1. Suppose that δ is a function on R such that 2 ≤ δ(x, y) ≤ 4 for all values of x and y.
What is the largest possible value of

∫
R δf dA?

Solution. Notice that f(x, y) ≥ 0 for x + y ≥ 1 and f(x, y) ≤ 0 for x + y ≤ 1. Therefore we want to
maximize δ when x+ y ≥ 1 and minimize δ when x+ y ≤ 1. Let S be the triangle where x+ y ≤ 1 inside
R and let T be the triangle where x+ y ≥ 1 inside R. We have∫

R
δf dA =

∫
S
δf dA+

∫
T
δf dA

≤
∫
S

2f dA+

∫
T

4f dA

=

∫
R

4f dA−
∫
S

2f dA just to make calculation simpler,

using S + T = R

= 0− 2

∫ 1

x=0

∫ 1−x

y=0
(x+ y − 1) dy dx

∫
R
f dA = 0 by symmetry

across the line x+ y = 1

= −2

∫ 1

x=0

(
(x− 1)(1− x) +

(1− x)2

2

)
dx

= −2

∫ 1

x=0

(
−(1− x)2

2

)
dx

=

∫ 1

x=0
(1− x)2dx

= −(1− x)3

3

∣∣∣1
x=0

=
1

3
.
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Problem 3. (10 points) Consider the vector field

F =
(√

x3 + x+ y2, e−y
2

+ 3x
)
.

Compute ∫
C
F · dr

where C is the boundary of the rectangle [0, 2] × [0, 1] oriented counterclockwise. (Hint:
√
x3 + x dx and

e−y
2
dy do not have closed form antiderivatives.)

Solution.
curl(F) = 3− 2y.

By Green’s theorem, we can get the contour integral by integrating the curl over the interior: let R be the
rectangle [0, 2]× [0, 1], so C = ∂R. We have∫

C
F · dr =

∫
R

curl(F) dA

=

∫
R

(3− 2y) dA

=

∫ 2

x=0

∫ 1

y=0
(3− 2y)dy dx

= 2(3y − y2)
∣∣∣1
y=0

= 2(3− 1) = 4.
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Problem 4. (10 points) Rewrite the integral∫ 3

x=−2

∫ x+3

y=x2−3
f(x, y) dy dx

as an integral (or sum of integrals) of the form∫ ?

y=?

∫ ?

x=?
f(x, y) dx dy.

Solution. The region is

−2 ≤ x ≤ 3

x2 − 3 ≤ y ≤ x+ 3.

Notice that the inequality x2−3 ≤ y can be rewritten as −
√
y + 3 ≤ x ≤

√
y + 3. The inequality y ≤ x+3

can also be rewritten as x ≥ y − 3.
Here is a picture of the region:
The integral will be made up of two parts because there are two kinds of hoizontal slices. The change

between the two occurs at the lower intersection point of the lines y = x2 − 3 and y = x+ 3. We calculate
these intersection points:

x2 − 3 = y = x+ 3

x2 − x− 6 = 0

(x− 3)(x+ 2) = 0.

Therefore the x-coordinates of the intersection points are −2 and 3. Substituting into y = x + 3 we get
the y-coordinates. The intersection points are therefore (−2, 1) and (3, 6).

The lowest possible value of y is the same as the lowest possible value of x2 − 3: it is −3. We can now
write our region in two pieces:

−3 ≤ y ≤ 1 1 ≤ y ≤ 6

−
√
y + 3 ≤ x ≤

√
y + 3 y − 3 ≤ x ≤

√
y + 3.

The integral is therefore made of two parts:∫ 1

y=−3

∫ √y+3

x=−
√
y+3

f(x, y) dx dy +

∫ 6

y=1

∫ √y+3

x=y−3
f(x, y) dx dy.
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Problem 5. (10 points) Let R be the 3-dimensional solid region defined by the inequalities

x2 +
y2

4
≤ z ≤ 6x+ y.

Compute the volume of R. (Hint: first make the change of coordinates u = x − 3, v = y
2 − 1, and

w = z − 6x− y + 10, then use cylindrical coordinates.)

Solution. Rearranging the inequality, it becomes

x2 − 6x+
y2

4
− y ≤ z − 6x− y ≤ 0.

Complete the square:

(x− 3)2 + (
y

2
− 1)2 ≤ z − 6x− y + 10 ≤ 10.

In the new coordinates, that is
u2 + v2 ≤ w ≤ 10.

Let S be this region in uvw-coordinates. We have∫
R
dVxyz =

∫
S

∣∣JT ∣∣dAuvw
where T is the transformation from uvw to xyz-coordinates. We have∣∣JT ∣∣ =

1∣∣JT−1

∣∣
and JT−1 is the determinant of 1 0 −6

0 1
2 −1

0 0 1


which is just 1

2 . Therefore JT = 2. We have

volume(R) = 2 volume(S).

Now we convert to cylindrical coordinates:∫
S
dAuvw =

∫ 2π

θ=0

∫ √10
r=0

∫ 10

w=r2
r dw dr dθ

= 2π

∫ √10
r=0

rw
∣∣10
w=r2

dr

= 2π

∫ √10
r=0

(
10r − r3

)
dr

= 2π(5r2 − r4

4

)∣∣√10
r=0

= 2π(50− 25) = 50π.

So our final answer is
volume(R) = 2 volume(S) = 100π.
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Problem 6. (16 points) Consider the curve C with equations and inequalities,

(x− 2)2 + z2 − 1 = y = 0

x ≥ 2

z ≥ 0

(a) (6 points) Find the centroid of C.

Solution. There are many ways to do this. The slickest may be to use Pappus’s theorem in reverse.
The surface area of a hemisphere of radius 1 is 2π(E(x|C)−2)length(C) = 2π. Therefore E(x|C)−2 =
2
π so E(x|C) = 2 + 2

π . A similar argument shows that E(z|C) = 2
π . Since C is entirely located on

the xz-plane, E(y|C) = 0.

The centroid is therefore

(E(x|C), E(y|C), E(z|C)) =
(

2 +
2

π
, 0,

2

π

)

Let S be the surface obtained by rotating C around the z-axis.

(b) (2 points) Find the surface area of S.

Solution. Apply Pappus’s theorem: area(S) = 2π E(x|C) length(C) = 2π(2 + 2
π )π2 = 2π2 + 2π.
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(c) (8 points) Compute
∫
S F · n dA where F is the vector field (0, 0, 1) and S is given the orientation

pointing away from the y-axis. (Hint: use Stokes’s theorem or the divergence theorem.)

Solution. Notice that F = curl(z, 0, 0). Therefore we can apply Stokes’s theorem. The boundary of
S consists of the two curves D : x2 + y2 − 9 = z = 0 and E : x2 + y2 − 4 = z − 1 = 0. The first goes
counterclockwise around the positive y-axis and the second goes clockwise.

Notice that D is also the boundary of the disc T where x2 + y2 ≤ 9 and z = 0, with the orientation
nT = (0, 0, 1). Likewise E is the boundary of the disc U where x2 + y2 ≤ 4 and z = 1, with the
orientation nU = (0, 0,−1).

Applying Stokes’s theorem again, we see that∫
D
F · dr =

∫
T

curl(F) · nT dAT =

∫
T

(0, 0, 1) · (0, 0, 1) dAT = area(T )∫
E
F · dr =

∫
U

curl(F) · nU dAU =

∫
T

(0, 0, 1) · (0, 0,−1) dAU = −area(U).

Therefore the integral we want is∫
S
F · n dA =

∫
D
F · dr +

∫
D
F · dr

=

∫
T

curl(F) · nT dA+

∫
U

curl(F) · nU

= area(T )− area(U) = 9π − 4π

= 5π

Since both T and U are discs.

Solution. Another solution uses the divergence theorem. Consider the solid R obtained by rotating
the region 0 ≤ x ≤ 2 +

√
1− z2 around the z-axis. The boundary of this region consists of three

pieces:
∂R = S + T − U

where T is the disc given by the inequality x2 + y2 ≤ 4 and the equation z = 1 and U is the disc
given by x2 + y2 ≤ 9 and z = 0 and both discs are given the orientation (0, 0, 1). By the divergence
theorem ∫

R
div(F) =

∫
∂R

F · n dA =

∫
S
F · n dA+

∫
T
F · n dA−

∫
U
F · n dA.

We have div(F) = 0 so rearranging, we get∫
S
F · n dA =

∫
U
F · n dA−

∫
T
F · n dA

=

∫
U
dA−

∫
T
dA

= area(U)− area(T )

= 9π − 4π

= 5π.
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Problem 7. (10 points) Let F be a vector field such that

div(F) = 0

F(x, y, 0) = ( ? , ? , xy)

F(x, 0, z) = ( ? , xz, ? )

F(0, y, z) = (yz, ? , ? ).

(The question marks stand for things that you will not need to complete this problem.) Suppose that S
is the triangle with vertices (0, 0, 1), (0, 1, 0), and (1, 0, 0) with normal vector n = 1√

3
(1, 1, 1). Compute∫

S F · n dA.

Solution. Consider the tetrahedron T defined by x+y+ z ≤ 1 and x ≥ 0, y ≥ 0, and z ≥ 0. The boundary
∂T is made up of S and three triangles:

T1 : x = 0 y + z ≤ 1 y ≥ 0 z ≥ 0 n = (−1, 0, 0)

T2 : y = 0 x+ z ≤ 1 x ≥ 0 z ≥ 0 n = (0,−1, 0)

T3 : z = 0 x+ y ≤ 1 x ≥ 0 y ≥ 0 n = (0, 0,−1).

By the divergence theorem,∫
S
F · n dA = −

∫
T1

F · n dA−
∫
T2

F · n dA−
∫
T3

F · n dA.

The three integrals on the right are the same by symmetry, so we only need to compute one of them.∫
S
F · n dA = −3

∫
T1

F · n dA

= −3

∫
T1

(yz, ? , ? ) · (−1, 0, 0) dA

= 3

∫ 1

y=0

∫ 1−y

z=0
yz dz dy

= 3

∫ 1

y=0

y(1− y)2

2
dy

=
3

2

∫ 1

y=0

(
(1− y)2 − (1− y)3

)
dy a calculational trick

=
3

2

(
(1− y)3

3
− (1− y)4

4

)∣∣∣1
y=0

=
3

2

(1

3
− 1

4

)
=

1

8
.
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Problem 8. (8 points)

(a) (4 points) Find all values of a, b, c, and d such that the vector field

F =
(
ax+ by, cx+ dy

)
is conservative on the plane. Justify your answer.

Solution. On a simply connected region, a vector field is conservative if and only if its curl is zero.
Since the plane is simply connected, we only have to check whether the curl is zero. The curl is c− b.
So F will be a gradient of a vector field if and only if b = c.
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(b) (4 points) Suppose that a surface S is parameterized with coordinates u and v and

∂(x, y)

∂(u, v)
= 2

∂(z, x)

∂(u, v)
= 1

∂(y, z)

∂(u, v)
= −2.

What is the surface area traced out by the parameters −1 ≤ u ≤ 2 and −1 ≤ v ≤ 1?

Solution. The Jacobian is the length of the vector (2, 1,−2), which is
√

4 + 1 + 4 = 3. Therefore the
area is 3 times the area traced out in uv-coordinates, which is 3(2) = 6. The surface area is therefore
3(6) = 18.
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Problem 9. (8 points) Let S be the paraboloid

z = x2 + y2 ≤ 4.

Suppose that S is rotating around the axis (1, 1, 1). Find the points of S that will not experience a Coriolis
effect (recall that these are the points of S where a normal vector is perpendicular to the axis of rotation).
Indicate these points on a sketch of S.

Solution. We find a formula for the normal vector. Parameterize the surface by

x = u

y = v

z = u2 + v2

u2 + v2 ≤ 4.

The normal vector (with respect to this parameterization) is

N =
∂r

∂u
× ∂r

∂v
= (1, 0, 2u)× (0, 1, 2v) = (−2u,−2v, 1).

The Coriolis effect will not occur when (−2u,−2v, 1) is perpendicular to (1, 1, 1)—that is, when (−2u,−2v, 1)·
(1, 1, 1) = 0. We obtain the equation,

−2u− 2v + 1 = 0.

That is, u+ v = 1
2 .

Since u = x and v = y, a point on the surface of the paraboloid will not experience a Coriolis effect if
x+ y = 1

2 . Here is a picture of those points:
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Problem 10. (10 points) In order to discourage guessing, each of the multiple choice questions below is
worth 2 points for a correct answer and −1 point for an incorrect answer. Problems that require justification
have additional point values, as indicated.

(a) (2 points) Let R be the shaded region to the right and
suppose that

∫
C F · (dx, dy) = 0. Decide whether

(i) there is a function f onR such that F = grad(f),

(ii) such a function may exist but is not guaranteed,
or

(iii) it is impossible that there is such a function.

Indicate your answer by circling the numeral of
whichever response is true.

C

R

Solution. The answer is (ii). The vector field (0, 0) is consistent with the hypotheses, and this is
certainly a gradient, so we can rule out (iii). On the other hand, it is possible that the curl of F
could be non-zero, in which case having

∫
C F · dr = 0 doesn’t tell us anything about whether F is

the gradient of a function. For example, the vector field

F =
( −y
x2 + y2

+ y,
x

x2 + y2
− x
)

gives the integral zero when integrated around the circle x2 + y2 = 1. However it is the gradient of
any function on any region because its curl is nonzero.
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(b) (2 points) There is a closed curve C inside the region
R at right such that∫

C
F · (dx, dy) 6= 0.

Decide whether

(i) curl(F) = 0,

(ii) it is possible that curl(F) = 0 but not guaran-
teed, or

(iii) it is impossible that curl(F) = 0.

Indicate your answer by circling the numeral of
whichever response is true.

R

Solution. The answer is (ii). If the point (0, 0) were contained in one of the holes then the vector field

F =
(
−y

x2+y2
, x
x2+y2

)
would have curl zero, but there would be a loop C such that

∫
C F · (dx, dy) 6= 0.

Therefore we can rule out (iii).

On the other hand, if C were a contractible loop inside of R then
∫
C F ·dr =

∫
S curl(F )dA 6= 0 would

tell us that curl(F ) 6= 0 somewhere on R. Therefore we can also rule out (i). The answer is (ii).
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(c) (6 points) Assume that F is a vector field that is
nice (its components have all partial derivatives
of all orders) on the whole plane except at the
points O, P , and Q, that curl(F) = 0 where it
is defined, and∫

C
F · dr =

∫
D
F · dr =

∫
E
F · dr = 0.

Decide whether

(i) on R, the vector field F is the gradient of
a function,

(ii) F might or might not be the gradient of a
function on R, or

(iii) F is not the gradient of a function on R.

Indicate your answer by circling the numeral of
whichever response is true. Then justify your
answer below.

O

P Q

C

D

E

R

Solution. First notice that because curl(F) = 0 on R, if a curve A can be continuously deformed within R
to another curve B then

∫
AF ·dr =

∫
B F ·dr. This tells us that we can check if F is the conservative—which

is equivalent to being the gradient of a function—by checking that
∫
C F · dr = 0 for any loop that encloses

the hole of R.
If we add the curves together, we get a curve C + D + E that goes around each point a total of two

times, clockwise. This is twice the loop the circles the hole clockwise, and
∫
C+D+E F · dr = 0. Therefore

F is the gradient of a function: the answer is (i).
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Problem 11. (extra credit: 10 points) Let F be the vector field

F(x, y) =
( −y
x2 + y2

,
x

x2 + y2

)
.

Define a new vector field

G(x0, y0) =

∫
R
F(x0 − x, y0 − y) dAR =

∫
R
F(x0 − x, y0 − y) dx dy

where R is the disc x2 + y2 ≤ 1.

(a) (8 points) Compute
∫
C G · (dx, dy) where C is the loop x2 + y2 = 4, oriented counterclockwise.

Solution. Write r0 = (x0, y0) and r = (x, y). First we change the order of integration:∫
C
F · dr =

∫
C

(∫
R
F(x0 − x, y0 − y) dA

)
· dr0

=

∫
R

(∫
C
F(x0 − x, y0 − y) · dr0

)
dA.

Now, notice that as we do this integral, r ranges over points of R. Every one of these points is
contained in the loop C, and we know that

∫
C F(x0 − x, y0 − y) · dr0 = −2π in this case. Therefore

we get ∫
C
F · dr =

∫
R

(−2π)dA = −2π area(R) = −2π2.

(b) (2 points) Find a number a such that on the region S defined by the inequalities 4 ≤ x2 + y2 ≤ 9,
the vector field G + aF is the gradient of a function.

Solution. For any point r0 outside of R, we have

curl(G) =

∫
R

curl(F(x0 − x, y0 − y)) dA =

∫
R

0 dA = 0.

Since curl(F) = 0 also, G + aF will be conservative on S if and only if its integral around a loop
encircling the hole is zero. The curve C from the last part is such a curve. We have∫

C
(G + aF) · dr0 = −2π2 + 2πa.

We can get this to be zero by making a = π. (Notice that this is the area of R.)
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