Math 52 - Spring 2012
 Exam \#3

No materials except pen or pencil and paper. Make sure to explain your answers fully.

First name:
Last name:
Student number:

Problem 1	$/ 8$
Problem 2	$/ 10$
Problem 3	$/ 10$
Problem 4	$/ 10$
Problem 5	$/ 10$
Problem 6	$/ 16$
Problem 7	$/ 10$
Problem 8	$/ 8$
Problem 9	$/ 8$
Problem 10	$/ 10$
Problem 11	$/ 10$
Total	$/ 100$

Problem 1. (8 points) Let C be the path

$$
\begin{gathered}
x(t)=\cos (2 \pi t) \\
y(t)=\sin (2 \pi t) \\
z(t)=t
\end{gathered}
$$

Compute the length of the path traversed as t increases from 0 to 1 .

Problem 2. (10 points) Let R be the square defined by the inequalities $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Let $f(x, y)=x+y-1$. Suppose that δ is a function on R such that $2 \leq \delta(x, y) \leq 4$ for all values of x and y. What is the largest possible value of $\int_{R} \delta f d A$?

Problem 3. (10 points) Consider the vector field

$$
\mathbf{F}=\left(\sqrt{x^{3}+x}+y^{2}, e^{-y^{2}}+3 x\right) .
$$

Compute

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the boundary of the rectangle $[0,2] \times[0,1]$ oriented counterclockwise. (Hint: $\sqrt{x^{3}+x} d x$ and $e^{-y^{2}} d y$ do not have closed form antiderivatives.)

Problem 4. (10 points) Rewrite the integral

$$
\int_{x=-2}^{3} \int_{y=x^{2}-3}^{x+3} f(x, y) d y d x
$$

as an integral (or sum of integrals) of the form

$$
\int_{y=?}^{?} \int_{x=?}^{?} f(x, y) d x d y .
$$

Problem 5. (10 points) Let R be the 3-dimensional solid region defined by the inequalities

$$
x^{2}+\frac{y^{2}}{4} \leq z \leq 6 x+y
$$

Compute the volume of R. (Hint: first make the change of coordinates $u=x-3, v=\frac{y}{2}-1$, and $w=z-6 x-y+10$, then use cylindrical coordinates.)

Problem 6. (16 points) Consider the curve C with equations and inequalities,

$$
\begin{gathered}
(x-2)^{2}+z^{2}-1=y=0 \\
x \geq 2 \\
z \geq 0
\end{gathered}
$$

(a) (6 points) Find the centroid of C.

Let S be the surface obtained by rotating C around the z-axis.
(b) (2 points) Find the surface area of S.
(c) (8 points) Compute $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$ where \mathbf{F} is the vector field $(0,0,1)$ and S is given the orientation pointing away from the y-axis. (Hint: use Stokes's theorem or the divergence theorem.)

Problem 7. (10 points) Let \mathbf{F} be a vector field such that

$$
\begin{gathered}
\operatorname{div}(\mathbf{F})=0 \\
\mathbf{F}(x, y, 0)=(?, ?, x y) \\
\mathbf{F}(x, 0, z)=(?, x z, ?) \\
\mathbf{F}(0, y, z)=(y z, ?, ?)
\end{gathered}
$$

(The question marks stand for things that you will not need to complete this problem.) Suppose that S is the triangle with vertices $(0,0,1),(0,1,0)$, and $(1,0,0)$ with normal vector $\mathbf{n}=\frac{1}{\sqrt{3}}(1,1,1)$. Compute $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$.

Problem 8. (8 points)
(a) (4 points) Find all values of a, b, c, and d such that the vector field

$$
\mathbf{F}=(a x+b y, c x+d y)
$$

is conservative on the plane. Justify your answer.
(b) (4 points) Suppose that a surface S is parameterized with coordinates u and v and

$$
\frac{\partial(x, y)}{\partial(u, v)}=2 \quad \frac{\partial(z, x)}{\partial(u, v)}=1 \quad \frac{\partial(y, z)}{\partial(u, v)}=-2 .
$$

What is the surface area traced out by the parameters $-1 \leq u \leq 2$ and $-1 \leq v \leq 1$?

Problem 9. (8 points) Let S be the paraboloid

$$
z=x^{2}+y^{2} \leq 4 .
$$

Suppose that S is rotating around the axis $(1,1,1)$. Find the points of S that will not experience a Coriolis effect (recall that these are the points of S where a normal vector is perpendicular to the axis of rotation). Indicate these points on a sketch of S.

Problem 10. (10 points) In order to discourage guessing, each of the multiple choice questions below is worth 2 points for a correct answer and -1 point for an incorrect answer. Problems that require justification have additional point values, as indicated.
(a) (2 points) Let R be the shaded region to the right and suppose that $\int_{C} \mathbf{F} \cdot(d x, d y)=0$. Decide whether
(i) there is a function f on R such that $F=\operatorname{grad}(f)$,
(ii) such a function may exist but is not guaranteed, or
(iii) it is impossible that there is such a function. Indicate your answer by circling the numeral of whichever response is true.

(b) (2 points) There is a closed curve C inside the region R at right such that

$$
\int_{C} \mathbf{F} \cdot(d x, d y) \neq 0
$$

Decide whether
(i) $\operatorname{curl}(\mathbf{F})=0$,
(ii) it is possible that $\operatorname{curl}(\mathbf{F})=0$ but not guaranteed, or
(iii) it is impossible that $\operatorname{curl}(\mathbf{F})=0$.

Indicate your answer by circling the numeral of whichever response is true.

(c) (6 points) Assume that \mathbf{F} is a vector field that is nice (its components have all partial derivatives of all orders) on the whole plane except at the points O, P, and Q, that $\operatorname{curl}(\mathbf{F})=0$ where it is defined, and

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{D} \mathbf{F} \cdot d \mathbf{r}=\int_{E} \mathbf{F} \cdot d \mathbf{r}=0
$$

Decide whether
(i) on R, the vector field \mathbf{F} is the gradient of a function,
(ii) \mathbf{F} might or might not be the gradient of a function on R, or
(iii) \mathbf{F} is not the gradient of a function on R.

Indicate your answer by circling the numeral of whichever response is true. Then justify your answer below.

Problem 11. (extra credit: 10 points) Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) .
$$

Define a new vector field

$$
\mathbf{G}\left(x_{0}, y_{0}\right)=\int_{R} \mathbf{F}\left(x_{0}-x, y_{0}-y\right) d A_{R}=\int_{R} \mathbf{F}\left(x_{0}-x, y_{0}-y\right) d x d y
$$

where R is the disc $x^{2}+y^{2} \leq 1$.
(a) (8 points) Compute $\int_{C} \mathbf{G} \cdot(d x, d y)$ where C is the loop $x^{2}+y^{2}=4$, oriented counterclockwise.
(b) (2 points) Find a number a such that on the region S defined by the inequalities $4 \leq x^{2}+y^{2} \leq 9$, the vector field $\mathbf{G}+a \mathbf{F}$ is the gradient of a function.

Extra space - do not detach.

Extra space - do not detach.

