Math 3140 — Fall 2012

Assignment #4

Due Fri., Sept. 28. Remember to cite your sources, including the people you talk to.

In this problem set, we use the notation $gcd \{a, b\}$ for the greatest common divisor of a and b.

Exercise 27. [Fra, §6, #16]

- 1. [Arm, §5, #10]. Make a list of all elements of $\mathbb{Z}/12\mathbb{Z}$ that generate $\mathbb{Z}/12\mathbb{Z}$. Recall that an element g of a group G generates G if every element of G is of the form g^n for some integer n.
- 2. An **automorphism** of a group is an isomorphism from that group to itself. Find all automorphisms of the group $\mathbf{Z}/12\mathbf{Z}$. (Hint: if φ is an automorphism of $\mathbf{Z}/12\mathbf{Z}$, what values are possible for $\varphi(1)$?)

Exercise 30. Let X be a set and $Y \subset X$ a subset. Let G be the subset of all $g \in S_X$ such that $g(y) \in Y$ for all $y \in Y$. Show that if the function $g|_Y : Y \to Y$ is surjective¹ then G is a subgroup of S_X .

Exercise 31. [Fra, §8, #21]

(a) Verify that the six matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

 \leftarrow_1

form a group in which the operation is multiplication of matrices. (Hint: one solution to this problem uses the last exercise; let $X = \mathbf{R}^3$ and let $Y = {\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3}$ where $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, and $\mathbf{e}_3 = (0, 0, 1)$ are the standard basis vectors.)

(b) Show that this group is isomorphic to S_3 .

Exercise 32. In the **fifteen puzzle** you are given a 4×4 grid containing 15 square tiles and one empty space. Any tile adjacent to the empty space can be slid into the empty space. The goal is, given a scrambled puzzle like the one on the left below

2	13	4	8	1	2	3	4
5	1	3	7	5	6	7	8
9	12	6	15	9	10	11	12
10	14	11		13	14	15	

¹Correction! I left out this important hypothesis originally; thanks Tyler

to return it to the starting position on the right. If you haven't played with a fifteen puzzle before, you may want to practice online before doing this exercise: migo.sixbit.org/puzzles/fifteen/.

- (a) Explain a correspondence between every position of the fifteen puzzle and the elements of the group S_{16} .
- (b) Write down the permutation corresponding to the unsolved fifteen puzzle above, using cycle notation.
- (c) Demonstrate that under this correspondence each move on a 15-puzzle corresponds is a transposition.
- (d) Show that a sequence of moves beginning with the empty tile in the upper left and ending with it in the lower right must consist of an even number of moves.
- (e) Write down the permutation correpsonding to the unsolved fifteen puzzle below:

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

- (f) Show that the fifteen puzzle shown above cannot be solved.
- **Exercise 33.** (a) [Fra, §6, #23]. List all subgroups of Z/36Z and indicate which subgroups are contained in which others.
 - (b) Describe all subgroups of $\mathbf{Z}/n\mathbf{Z}$.
- **Exercise 34.** (a) Let *n* be an integer. Show that the order of $k \in \mathbb{Z}/n\mathbb{Z}$ is $n/\gcd\{k,n\}$.
 - (b) Let *m* and *n* be integers. Show that there is a homomorphism $\varphi : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ such that $\varphi(1) = k$ if and only if $n/ \gcd\{k, n\}$ divides *m*.

Exercise 35. Show that if G is an **abelian** group and n is a positive integer then

$$H = \left\{ g \in G \middle| g^n = 1 \right\}$$

is a subgroup of G. (Hint: One way to solve this exercise is to show that $\varphi(g) = g^n$ is an homomorphism from G to itself.)

References

- [Arm] M. A. Armstrong. Groups and symmetry. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1988.
- [Fra] John B. Fraleigh. A first course in abstract algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., seventh edition edition, 2002. ISBN-10: 0201763907, ISBN-13: 978-0201763904.