
Math 3140 — Fall 2012

Assignment #3

Due Fri., Sept. 21. Remember to cite your
sources, including the people you talk to.

My solutions will repeatedly use the following proposition from class:

Proposition 1. Let G be a group and H ⊂ G a subset. If H is non-empty and
for every x, y ∈ H we have xy−1 ∈ H as well then H is a subgroup of G.

Exercise 12. Suppose that G is a group with 5 elements.

(a) Show that G is isomorphic to Z/5Z, the group of integers modulo 5. (Hint:
Let x be a non-zero element of G and consider the permutation Lx of G
induced by left multiplication by x. What could the orbits of this action
look like?)

Solution. Let x be an element of G other than the identity. Then ord(x)
divides the size of G, which is 5. Since the only divisors of 5 are 1 and 5
this means that x has order either 1 or 5. But the only element with order
1 is the identity, so this means the order of x is 5. That means that the
elements of G must be 1, x, x2, x3, x4. (Indeed, if xa = xb for a, b < 5 then
xa−b = 1 so ord(x) must divide a−b, which impossible becuase |a− b| < 5
and ord(x) = 5.)

Now consider the function ϕ : Z/5Z → G defined by ϕ(n) = xn. This
is well-defined because if n ≡ m (mod 5) we have n −m = 5k for some
integer k, so xm = xn+5k = xn(x5)k = xn since x5 = 1. Furthermore,
this is a homomorphism because ϕ(n+m) = xn+m = xnxm = ϕ(n)ϕ(m).
Finally, this is a bijection because if ϕ(n) = ϕ(m) then xn = xm so
xn−m = 1 so n−m is a multiple of 5 so n ≡ m (mod 5).

(b) Suppose p is a prime number. Up to isomorphism, how many groups are
there with p elements? (You do not have to prove your answer is correct,
but try to give a sentence or two of justification.)

Solution. All of the reasoning of the solution above works equally well if 5
is replaced by any prime number p. Therefore all groups with p elements
are isomorphic to Z/pZ.

Exercise 21. Justify your answers below.

(a) Is [0, 1] ⊂ R a subgroup? (Recall that [0, 1] is the interval of all real
numbers x such that 0 ≤ x ≤ 1.)
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Solution. No: 1 ∈ [0, 1] but its inverse −1 is not in [0, 1].

(b) Is 3Z ⊂ R a subgroup? (Here 3Z is the set of integers that are multiples
of 3.)

Solution. Yes: 3Z is not empty (it contains 0, for example) and if a, b ∈ 3Z
then a = 3x and b = 3y so a − b = 3(x − y) is also in 3Z. Therefore by
Proposition 1, 3Z is a subgroup of R.

(c) Is Q ⊂ C a subgroup?

Solution. Yes: it’s non-empty because 0 ∈ Q and if x and y are rational
numbers then so is x− y. Therefore by Proposition 1, Q is a subgroup of
C.

(d) Is R rQ ⊂ R a subgroup? (Note that R rQ is the set of all irrational
real numbers.)

Solution. No: RrQ doesn’t contain the identity!

(e) Let A ⊂ Dn be the subset consisting of all reflections and the identity. Is
A a subgroup?

Solution. If n = 2 then yes, this is a group: D2 consists of two elements,
a reflection and the identity. If n > 2 then Dn contains two different
reflections τ and σ. Each of τ and σ fixed a different line. Let θ be the
angle between the lines fixed by τ and σ. Then I claim τσ has the effect
of rotating by an angle of 2θ.

To prove this, select a ray S fixed by σ and a ray T fixed by τ such that
the angle from S to T is θ. If the angle from S to a ray R is φ then the
angle from S to σ(R) is −φ. Therefore the angle from T to σ(R) makes
an angle −θ − φ. Then the angle from T to τ(σ(R)) will be θ + φ. The
angle from S to τσ(R) is therefore 2θ + φ. Thus acting by τσ has the
effect of rotation by 2θ.

(f) Let B ⊂ Dn be the subset of all rotations (including the identity). Is B a
subgroup?

Solution. Yes. B is non-empty (contains the identity) and if σ and τ are
rotations by angles θ and φ, respectively, then στ−1 is rotation by θ − φ.
Therefore B is a subgroup.

Exercise 22. Suppose that ϕ : A → B is a homomorphism of groups. Let
K ⊂ A be the set of all elements a ∈ A such that ϕ(a) = 1. Symbolically,

K = {a ∈ A
∣∣ϕ(a) = 1}.

Show that K is a subgroup of A.
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Solution. We know that ϕ(1) = 1 by an earlier exercise so 1 ∈ K. Therefore
K 6= ∅. Also, if a, b ∈ K then ϕ(ab−1) = ϕ(a)ϕ(b)−1 = 1 ·1−1 = 1 so ab−1 ∈ K.
Therefore K is a subgroup by Proposition 1.

Exercise 23. [Arm, Exercise 5.1].

(a) Find all subgroups of Z/12Z.

Solution. The subgroups are

Z/12Z

ttttttttt

JJJJJJJJJ

2Z/12Z

UUUUUUUUUUUUUUUUUU 3Z/12Z

4Z/12Z

JJJJJJJJJ
6Z/12Z

ttttttttt

{0}.

The lines indicate which groups are contained in which others: if X and
Y are connected by a line and X appears above Y then X contains Y .

(b) Find all subgroups of D5.

Solution. There are 10 elements in D5. Let ρ be a rotation by 72◦ = 2π
5

and let τ be a reflection in D5. Then the elements of D5 are

1, ρ, ρ2, ρ3, ρ4,

τ, τρ, τρ2, τρ3, τρ4.

The elements in the first line are reflections and the elements in the second
line are rotations. Suppose that G ⊂ D5 is a subgroup. If it contains
a rotation other than the identity then it contains all rotations (since
every element of Z/5Z has order 5!) and the collection of reflections is
a subgroup of D5. Each reflection generates a subgroup with 2 elements.
If a subgroup contains a non-trivial rotation and a non-trivial reflection
then it must be all of D5. Therefore we have named all of the subgroups
already:

D5
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Exercise 24. Suppose that G is a group and A and B are subgroups of G.

(a) Show that A ∩B is also a subgroup.

Solution. If A and B are subgroups then both contain the identity e ∈ G.
Therefore e ∈ A∩B so A∩B 6= ∅. Also, if a, b ∈ A∩B then a, b ∈ A and
a, b ∈ B so ab−1 ∈ A and ab−1 ∈ B so ab−1 ∈ A ∩ B. Therefore A ∩ B is
a subgroup by Proposition 1.

(b) Assume that G is abelian. Let C = {ab
∣∣a ∈ A, b ∈ B}. Show that C is a

subgroup of G.

Solution. We know that C is non-empty because e ∈ A and e ∈ B so
e = ee ∈ C. Also, if we have two elements x, y ∈ C then x = ab with
a ∈ A and b ∈ B and y = cd with c ∈ A and d ∈ B. We have xy−1 =
ab(cd)−1 = ac−1bd−1 (because G is abelian!). Furthermore, ac−1 ∈ A
and bd−1 ∈ B because A and B are subgroups of G. Therefore their
product ac−1bd−1 = xy−1 is in C. Therefore C is a subgroup of G by
Proposition 1.

(c) Show that in the last part, the assumption G be abelian is essential by
giving an example of a non-abelian group G and subgroups A and B such
that if C is defined as above then C is not a subgroup of G.

Solution. ConsiderG = S3, let A = {e, (12)} and B = {e, (23)}. These are
both subgroups but C consists of five elements: {e, (12), (23), (123), (132)}
and this is not a subgroup (it does not contain (23)(123) = (13)).

Exercise 25. Compute the sign of each of the following permutations:

(a)

(
1 2 3 4 5
3 4 5 2 1

)
Solution. We can count the number of crossings in

1

''NNNNNNNNNNNNNN 2

''NNNNNNNNNNNNNN 3

''OOOOOOOOOOOOOO 4

{{

5

ssggggggggggggggggggggggggggg

1 2 3 4 5.

There are 7 crossings so the permutation is odd. Its sign is −1.

We can also compute by writing it in cycle notation: (135)(24) = (13)(35)(24).
This is a product of an odd number of transpositions so its sign is −1.
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(b) (1364)(25)

Solution. We can write this as a product of transpositions

(13)(36)(64)(25).

There is an even number of transpositions, so the permutation is even. Its
sign is +1.

(c) (a1a2 · · · an) .

Solution. Write this as a product of transpositions:

(a1a2)(a2a3) · · · (an−1an).

There are n− 1 transpositions above, so the sign is (−1)n−1.

Exercise 26. The first 3 parts of this problem are meant to give you ideas for
the last part. It is also permissible to use the last part to solve the first 3 parts.

(a) Compute the order of the permutation (12)(345) ∈ S5.

Solution.
ord((12)(345)) = 6

(b) Compute the order of (123)(4567) ∈ S7.

Solution.
ord((123)(4567)) = 12

(c) Compute the order of (12)(34)(567) ∈ S7.

Solution.
ord((12)(34)(567)) = 6

(d) Suppose that σ = σ1 · · ·σk is a product of disjoint cycles in Sn. Prove
that

ord(σ) = lcm{ord(σ1), . . . , ord(σk)}.
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Solution. Because disjoint cycles commute, we have

σ` = σ`1 · · ·σ`k.

Therefore the order of σ is the smallest value of ` such that σ`i = e for all
i. But σ`i = e if and only if ` is a multiple of the order of σi. Therefore the
smallest ` such that σ`i = e for all i is precisely the least common multiple
of the orders of all of the σi.

Exercise 28. Let A be a group. Let be the set of automorphisms of A:

G = {f : A→ A
∣∣f is an isomorphism of groups}.

Show that G is a group where the operation is composition of functions. (Hint:
show that G is a subgroup of SA.)

Solution. Since every isomorphism of groups is a bijection, G is a subset of SA.
To show it is a subgroup we have to show that it is non-empty and that if f, g ∈ G
then fg−1 ∈ G (by Proposition 1). We certainly have the identity function
idA ∈ G because the identity is definitely a automorphism of A. Furthermore,
we can check that if f and g are automorphisms of G then so is fg−1:

We have to check that fg−1 is a bijective homomorphism. It is a bijection
because it is the composition of the bijections f and g−1. It is a homomorphism
because both f and g−1 are homomorphisms, which implies that

fg−1(xy) = f(g−1(xy))

= f(g−1(x)g−1(y)) because g−1 is a homomorphism

= f(g−1(x))f(g−1(y)) because f is a homomorphism

= fg−1(x)fg−1(y).

Thus fg−1 is a homomorphism. It follows now that G is a subgroup of SA and
is in particular therefore a group.

Exercise 29. Let G be the set of all surjective functions from N (the set of
natural numbers) to itself. Is G a group with the operation being composition
of functions? If so, prove it. If not, say which axioms of a group fail.

Solution. This is not a group. Composition of functions is associative, so G
has an associative composition law; the identity function serves as an identity
element. And if f : N → N is a surjection then for each y ∈ N there is some
x ∈ N such that f(x) = y. If we choose such an x for each y ∈ N then we can
define a function g : N→ N such that f(g(y)) = y.

However, g is only a right-sided inverse to f . It is possible to find a surjection
f : N→ N that has no left-sided inverse. For example, let

f(x) =

{
0 x = 0

x− 1 x > 0
.

6



This function is surjective but not injective, so it cannot have an inverse. How-
ever, the function

g(y) = y + 1

is a right-sided inverse for f : we have, fg(y) = y but gf(0) = 1 6= 0 so g is not
a left-sided inverse for f .
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