Math 3140 — Fall 2012 Assignment #2

Fri., Sept. 14¹

 \leftarrow_1

 \leftarrow_2

 \leftarrow_3

Exercise 2. [Fra, §4, #9]. Let U be the set of complex numbers of absolute value 1.

- (a) Show that U is a group under multiplication of complex numbers.
- (b) Show that U is not isomorphic to \mathbf{R} (with its additive group structure).
- (c) Show that U is not isomorphic to \mathbf{R}^* (with its multiplicative group structure).

Hint: it might help to think about Exercise 13 while thinking about this one.

Exercise 13. Suppose that G is a group. An element $x \in G$ is said to have order n if $x^n = e$ but $x^k \neq e$ for 0 < k < n. If no such n exists, we say that x has infinite order.

- (a) What is the order of the identity element e?²
- (b) Compute the orders of all of the elements of the symmetric group S_3 .
- (c) Give an example of a group with more than one element where every element other than e has infinite order.
- (d) Give an example of an infinite group where every element has finite order. (Hint: look for a subgroup of U.)

Exercise 14. Prove that S_3 is not isomorphic to $\mathbf{Z}/6\mathbf{Z}$, the group of integers modulo 6.³

Exercise 15. Suppose that G is a group and x is an element of G. Prove that the function $\varphi: G \to G$ defined by

$$\varphi(y) = xyx^{-1}$$

is an isomorphism from G to itself. An isomorphism from a group to itself is called an **automorphism**.

¹Due date postponed!

²clarification added; thanks Rachel Benefiel

³this is the set $\{0, 1, 2, 3, 4, 5\}$ with addition modulo six as the group operation

Exercise 16. Do not show your work on this problem. Consider the following permutations in S_6 :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$

$$\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}$$

- (a) [Fra, §8, #2]. Compute $\tau^2 \sigma$.
- (b) [Fra, §8, #8]. Compute σ^{100} .
- (c) Express μ in cycle notation.

Exercise 17. Let σ be the permutation $(a_1 a_2 \cdots a_n)$ in cycle notation.

- (a) Write σ^{-1} in cycle notation.
- (b) Write σ^2 in cycle notation. Hint: your answer may depend on n; try computing σ^2 for a few small values of n.

Exercise 18. Let A_4 be the subset of S_4 consisting of all permutations that are products of an **even number**⁴ of transpositions. A transposition is a permutation that exchanges two things and leaves everything else stationary; in cycle notation, a transposition looks like (*ab*). Thus (12)(13) and (12)(24)(13)(24) are in A_4 , but (23) and (12)(23)(34) are not.

Write down all of the elements of A_4 using cycle notation.⁵

 \leftarrow_5

Exercise 19. [Fra, §8, #18]. List all of the subgroups of S_3 .

Exercise 20. Suppose that G is a group. How would you define a symmetry of G?

References

[Fra] John B. Fraleigh. A first course in abstract algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., seventh edition edition, 2002. ISBN-10: 0201763907, ISBN-13: 978-0201763904.

⁴correction: accidentally left this out before!

 $^{^{5}\}mathrm{I}$ reworded this problem; note that you **do not** have to write down the multiplication table!