
Math 3140 — Fall 2012

Assignment #2

Due Fri., Sept. 14. Remember to cite your
sources.

Exercise 2. [Fra, §4, #9]. Let U be the set of complex numbers of absolute
value 1.

(a) Show that U is a group under multiplication of complex numbers.

Solution. First we check that the group operation is well-defined: suppose
that |z| = |w| = 1. Then |zw| = |z| · |w| = 1. Therefore if z, w ∈ U , so is
zw.

The identity element is 1 = 1 + 0i. The inverse of z = x+ iy is z = x− iy
since zz = |z|2 = 1. Finally, associativity comes from the associativity of
complex multiplication. It’s okay to treat this fact as known, but if you
don’t cite it you have to check:

((a+ ib)(c+ id))(e+ if) = (a+ ib)((c+ id)(e+ if)).

(b) Show that U is not isomorphic to R (with its additive group structure).

Solution. Consider −1 ∈ U . We have (−1)2 = 1 in U . If ϕ : U → R is a
homomorphism then ϕ(−1) is an element x ∈ R such that 2x = 0. The
only such element is x = 0. Therefore ϕ(−1) = 0. This proves that no
homomorphism U → R can be injective. In particular, there can be no
isomorphism (bijective homomorphism) U → R.

Solution. Now that we have the notion of a subgroup, a more efficient
solution to this problem is possible: we show that U is a subgroup of
C∗. Since 1 ∈ U , we know that U 6= ∅. If z, w ∈ U then we check that
zw−1 ∈ U . We have to check that |zw−1| = 1 if |z| = |w| = 1. Remember
that |w−1| = |w|−1 so that we have

|zw−1| = |z||w|−1 = 1 · 1−1 = 1.

(c) Show that U is not isomorphic to R∗ (with its multiplicative group struc-
ture).
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Solution. Consider i ∈ U . We have i4 = 1. Therefore if ϕ : U → R∗ is
a homomorphism we will have ϕ(i)4 = 1. The only solutions to this are
ϕ(1) = ±1. But then we will have

ϕ(−1) = ϕ(i2) = (±1)2 = 1

so ϕ cannot be injective.

Hint: it might help to think about Exercise 13 while thinking about this one.

Comments. Several people seemed confused about the definition of multiplica-
tion of complex numbers. Remember:

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc)

because i2 = −1.
A frequent mistake was to forget to verify that the group operation is well-

defined. You have to make sure that if z, w ∈ U then zw ∈ U as well.

Exercise 13. Suppose that G is a group. An element x ∈ G is said to have
order n if xn = e but xk 6= e for 0 < k < n. If no such n exists, we say that x
has infinite order.

(a) What is the order of the identity element e?1 ←1

Solution. We have e1 = e and there is no integer k with 0 < k < 1 so
ord(e) = 1.

(b) Compute the orders of all of the elements of the symmetric group S3.

Solution.

ord(e) = 1 ord((12)) = 2 ord((13)) = 2

ord((23)) = 2 ord((123)) = 3 ord((132)) = 3.

(c) Give an example of a group with more than one element where every
element other than e has infinite order.

Solution. Let G = R. If x ∈ R and x has finite order then nx = 0 for
some n ∈ Z other than n = 0. But then x = 1

n0 = 0. Therefore x = 0 is
the only element of R of finite order.

(d) Give an example of an infinite group where every element has finite order.
(Hint: look for a subgroup of U .)

1clarification added; thanks Rachel Benefiel
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Solution. The simplest example is probably Q/Z, but we haven’t dis-
cussed quotient groups yet. Let G be the set of all elements of U of the
form eiq = cos(θ) + i sin(θ) where θ = 2πq for some rational number q.
These elements form a subgroup of U because they are a non-empty subset
and if x = e2πiq and y = e2πir are in G then y−1 = e−ir and

xy−1 = e2πiqe−2πir = e2πi(q−r)

is in G. If q = a/b and x = e2πiq then xb = e2πiqb = e2πia = 1 because a is
an integer. Therefore x has finite order (it might not actually have order
b, but it has some order dividing b).

Exercise 14. Prove that S3 is not isomorphic to Z/6Z, the group of integers
modulo 6.2 ←2

Solution. Here is one way: Z/6Z is abelian because a + b (mod 6) = b + a
(mod 6); on the other hand, (12)(23) = (123) and (23)(12) = (132) in S3 so S3

is not abelian. If ϕ : S3 → Z/6Z were an isomorphism then

ϕ((123)) = ϕ((12)(23)) = ϕ((12))+ϕ((23)) = ϕ((23))+ϕ((12)) = ϕ((23)(12)) = ϕ((132))

so ϕ is not injective.
Here is another: Z/6Z contains an element—1—whose order is 6, while we

saw in the previous exercise that S3 only contains elements of orders 1, 2, and 3.
Since an isomorphism has to preserve the orders of elements, there is nowhere
an isomorphism ϕ : Z/6Z → S3 could send 1: if ϕ were an isomorphism then
ϕ(1) would have order 6 and there is no element of order 6 in S3.

Here is yet another: Z/6Z contains one element of order 2—it’s 3—while
we have just seen S3 has 3 elements of order 2. If ϕ : S3 → Z/6Z were an
isomorphism then it would send the set of elements of order 2 in S3 to the set
of elements of order 2 in Z/6Z. But the latter set has only 1 element while the
former has 3. Therefore ϕ cannot be injective on the subset of elements of order
2 of S3. In particular, ϕ takes two elements of S3 to the same element of Z/6Z
so ϕ can’t be injective, hence can’t be an isomorphism.

Comments. I saw many arguments of the following form: “S3 is abelian and
Z/6Z is not abelian; this is a structural property so the groups are not isomor-
phic.” This argument is totally correct, but it’s dangerous to get in the habit
of claiming properties are structural without doing some verification; invariably
someone will identify a non-structural property and claim without proof that
it is structural, then use it to conclude incorrectly that two groups can’t be
isomorphic.

Exercise 15. Suppose that G is a group and x is an element of G. Prove that
the function ϕ : G→ G defined by

ϕ(y) = xyx−1

2this is the set {0, 1, 2, 3, 4, 5} with addition modulo six as the group operation
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is an isomorphism from G to itself. An isomorphism from a group to itself is
called an automorphism.

Solution. First we check ϕ is a homomorphism. We have

ϕ(y)ϕ(z) = xyx−1xzx−1 = xyzx−1 = ϕ(yz)

so ϕ is a homomorphism. Also, ϕ is a bijection because the function ψ(z) =
x−1yx is inverse to ϕ:

ψ(ϕ(y)) = x−1ϕ(y)x = x−1xyx−1x = y

ϕ(ψ(z)) = xψ(z)x−1 = xx−1zxx−1 = z.

Comments. Many people assumed that G was abelian (either implicitly or ex-
plicitly). If G is abelian then ϕ(y) = xyx−1 = xx−1y = y so ϕ is the identity
function, which is obviously a homomorphism. The problem is only interesting
when G is not abelian!

Do not assume multiplication is commutative unless there is a valid
reason to!

Exercise 16. Do not show your work on this problem. Consider the following
permutations in S6:

σ =

(
1 2 3 4 5 6
3 1 4 5 6 2

)
τ =

(
1 2 3 4 5 6
2 4 1 3 6 5

)
µ =

(
1 2 3 4 5 6
5 2 4 3 1 6

)
(a) [Fra, §8, #2]. Compute τ2σ.

Solution.

τ2σ =

(
1 2 3 4 5 6
2 4 1 5 6 3

)
= (124563)

(b) [Fra, §8, #8]. Compute σ100.

Solution. In cycle notation, σ = (134562). Therefore σ100 = σ6(16)+4 =
(σ6)16σ4 = σ4 since σ6 = e. Therefore,

σ100 = σ4 = (164)(253) =

(
1 2 3 4 5 6
6 5 2 1 3 4

)
.
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(c) Express µ in cycle notation.

Solution.
µ = (15)(2)(34)(6) = (15)(34).

Exercise 17. Let σ be the permutaiton (a1a2 · · · an) in cycle notation.

(a) Write σ−1 in cycle notation.

Solution.
σ−1 = (anan−1 · · · a2a1)

(b) Write σ2 in cycle notation. Hint: your answer may depend on n; try
computing σ2 for a few small values of n.

Solution. If n is even we get

σ2 = (a1a3a5 · · · an−1)(a2a4 · · · an).

If n is odd we get

σ2 = (a1a3a5 · · · an−2ana2a4 · · · an−3an−1).

Exercise 18. Let A4 be the subset of S4 consisting of all permutations that are
products of an even number3 of transpositions. A transposition is a permu- ←3

tation that exchanges two things and leaves everything else stationary; in cycle
notation, a transposition looks like (ab). Thus (12)(13) and (12)(24)(13)(24)
are in A4, but (23) and (12)(23)(34) are not.

Write down all of the elements of A4 using cycle notation.4 ←4

Solution. First of all, A4 contains the identity and all the products of disjoint
transpositions of the form (ab)(cd). SoA4 contains e, (12)(34), (13)(24), (14)(23).
We also see that if we multiple (ab)(bc) we get (abc) so A4 also contains every
3-cycle. That is A4 contains the eight 3-cycles,

(123), (124), (132), (134), (142), (143), (234), (243).

In fact, these are all of the elements of A4, because the other elements of S4 are
the transpositions (ab) and the 4-cycles (abcd) = (ab)(bc)(cd), each of which is
a product of an odd number of transpositions.

3correction: accidentally left this out before!
4I reworded this problem; note that you do not have to write down the multiplication

table!
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Exercise 19. [Fra, §8, #18]. List all of the subgroups of S3.

Solution.

S3

hhhhhhhhhhhhhhhhhhhhhh

rrrrrrrrrrr

PPPPPPPPPPPPP

{e, (12)}

UUUUUUUUUUUUUUUUUUUUUU {e, (13)}

LLLLLLLLLLL
{e, (23)} {e, (123), (132)}

nnnnnnnnnnnnn

{e}

Exercise 20. Suppose that G is a group. How would you define a symmetry
of G?

Solution. A symmetry of G is an automorphism of G (an isomorphism from G
to itself).

Comments. This question was extra credit, since it did not have a precise answer
and was merely asking for a reasonable definition. Many said that a symmetry
of G would be a symmetry of the underlying set of G—that is, a bijection from
this set to itself. This answer is reasonable in a sense, but it takes no account
of the group structure. The correct answer is a bijection from G to itself that
respects the group structure—that is, an automorphism.
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