
Math 3140 — Fall 2012

Assignment #1

Due Weds., Sep. 5.

Exercise 1. (a) List all of the symmetries of a square, allowing all transfor-
mations made up of rotations, reflections, and translations. This group is
called D4.

Solution. Label the vertices 1, 2, 3, and 4 in counterclockwise order. The
symmetries are:

1) e, the identity,

2) ρ, rotation by 90◦ counterclockwise,

3) ρ2, rotation by 180◦,

4) ρ3, rotation by 270◦ counterclockwise,

5) γ13, reflect through the line containing 1 and 3,

6) γ24, reflect through the line containing 2 and 4,

7) α, reflect through the line connecting the midpoint of the side con-
taining 1 and 2 to the midpoint of the side containing 3 and 4,

8) β, reflect through the line connecting the midpoint of the side con-
taining 1 and 4 to the midpoint of the side containing 2 and 3.

(b) How many elements does D4 have?

Solution. Eight.

(c) Is D4 abelian?

Solution. No, it is not, because we can compute ργ13 = α and γ13ρ =
β.

Exercise 3. (a) Suppose that G is a group and x is an element of G. Show
that if y is a right inverse of x (meaning that xy = e) and z is a left inverse
of x (meaning that zx = e) then y = z.

Solution. If we multiply the equation xy = e on the left by z we get
z(xy) = ze = z because e is the identity of G. By associativity, we
therefore get (zx)y = z and then since z is a left inverse of x, we get
ey = z. Again because e is the identity we finally get ey = y so y = z.
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(b) Conclude from this that each element of G has exactly one inverse. (Re-
member that the group axioms explicity guarantee every element has at
least one inverse, but they do not say that the inverse must be unique.
You are supposed to prove this uniqueness.)

Solution. If y and z are two inverses of x then in particular y is a left
inverse and z is a right inverse. Hence y = z by the previous part of the
exercise.

Comments. One mistake that occurred a few times was to prove that z−1 = y−1

legitimately but then to conclude immediately from this that z = y. Implicitly,
what this is saying is that z = (z−1)−1 = (y−1)−1 = y, but remember that we
are in the process of proving that inverses are unique. Therefore, just knowing
that z−1 = y−1 does not tell us that the inverses of z−1 and y−1 have to be the
same.

Many also attempted to use commutativity in one form or another while
solving this exercise. You can’t do that because not every group is commutative.
That is, if x and y are elements of an abstract group then you generally cannot
assume that xy = yx. Do not make this mistake!

This misunderstanding often takes the following form: suppose that a = bc
in a group; then c = a

b so a = cb. The problem is in the notation a
b . This

notation does not mean anything in most groups because it isn’t clear if a
b is

supposed to mean ab−1 or b−1a. These elements are usually different and it is
essential not to confuse them.

Exercise 4. Suppose that G is a group and x and y are elements of G. Show
that (xy)−1 = y−1x−1.

Solution. We saw above that the inverse of xy is unique. Therefore if xyz =
e and zxy = e then we can conclude that z = (xy)−1. In particular, if
(xy)y−1x−1 = e and y−1x−1(xy) = e then we will deduce that (xy)−1 =
y−1x−1. For this, we multiply using associativity and get

xyy−1x−1 = xex−1 = xx−1 = e

y−1x−1xy = y−1ey = y−1y = e.

Solution. Here is another very nice solution that several people used:

(xy)−1xy = e definition of inverse

(xy)−1xyy−1 = y−1 multiply on right by y−1

(xy)−1xe = y−1 yy−1 = e by definition of inverse

(xy)−1x = y−1 e is the identity

(xy)−1xx−1y−1x−1 multiply on right by x−1

(xy)−1e = y−1x−1 xx−1 = e by definition of inverse

(xy)−1 = y−1x−1 e is the identity.
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Comments. In a proof like this, it is important to explain each step of your
argument. Otherwise it is difficult to tell if you knew what you were doing or
stumbled on the right step by accident. I will insist on this on the exam.

I saw things like (xy)−1 = 1
xy = 1

y
1
x = y−1x−1 a lot. Remember, the fraction

bar does not have a well-defined meaning in a group unless the group is known
to be commutative!

A lot of people also did a “left side–right side” proof in which they started
with the thing they wanted to prove ((xy)−1 = y−1x−1 or some similar variant
and made a sequence of logical steps to arrive at a statement that was already
known (usually e = e). Even though the ideas going into many of these proofs
were sound, this is not a legitimate proof techinique! Many “proofs” along
these lines are false. Only right side–left side proofs where every step is reversible
are truly correct, and a right side–left side proof that does not explain why each
step is reversible is not a proof. See this page for a thorough explanation of the
dangers of right side–left side proofs: http://math.colorado.edu/~kstange/

teach/rightleft.pdf.

Exercise 5. [Fra, §4, #19]. Let S be the set of all real numbers except −1
with the composition law

a ∗ b = a+ b+ ab.

(a) Show that S is a group.

Solution. First we must check that ∗ is well defined. That is, we must
check that if a and b are real numbers other than −1 than a ∗ b 6= −1.
Suppose that a ∗ b = −1. Then a + b + ab = −1 so 1 + a + b + ab = 0.
But this factors into (1 + a)(1 + b) = 0 so we get a = −1 or b = −1. By
the contrapositive, if a 6= −1 and b 6= −1 then a ∗ b 6= −1. Thus ∗ is
well-defined.

We also have to check that ∗ is associative:

a ∗ (b ∗ c) = a ∗ (b+ c+ bc) (a ∗ b) ∗ c = (a+ b+ ab) ∗ c
= a+ b+ c+ bc+ a(b+ c+ bc) = a+ b+ ab+ c+ (a+ b+ ab)c

= a+ b+ c+ bc+ ab+ bc+ abc = a+ b+ ab+ c+ ac+ bc+ abc

and these are evidently the same.

The identity element is e = 0. Indeed e ∗ b = 0 + b + 0b = b and a ∗ e =
a+ 0 + a0 = a.

We can solve for the inverse of a ∈ S: if a ∗ b = 0 then a + b + ab = 0 so
b(1 + a) = −a and b = −a

1+a . We check that this is indeed a left inverse of
a:

−a
1 + a

∗ a =
−a

1 + a
+ a− a2

1 + a
=
−a+ a(1 + a)− a2

1 + a
= 0.
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Since S is abelian (proof: a ∗ b = a + b + ab = b + a + ba = b ∗ a) this
means −a1+a is also a right inverse of a. Thus S is a group.

(b) Show that S is isomorphic to R∗.

Solution. Let f : S → R∗ be the function f(a) = a + 1. Then f is a
bijection since it has the inverse f−1(a) = a − 1. (Notice that f is well-
defined because no there is no a ∈ S such that f(a) = 0; likewise f−1 is
well-defined because there is no a ∈ R∗ such that f−1(a) = −1.)

To check that f is an isomorphism, we also need to check that

f(a ∗ b) = f(a)f(b).

We evaluate both sides:

f(a ∗ b) = f(a+ b+ ab) f(a)f(b) = (a+ 1)(b+ 1)

= 1 + a+ b+ ab = ab+ a+ b+ 1

and these are evidently the same. Therefore f is an isomorphism.

(c) Solve the equation 2 ∗ x ∗ 3 = 7 in S. (Suggestion: While it is possible
to solve this problem directly using the definition of the group law, try
making use of the previous part of this exercise.)

Solution. Notice that
2 ∗ x ∗ 3 = 7

if and only if
f(2)f(x)f(3) = f(7)

because f is an isomorphism. We solve the second equation:

f(x) =
f(7)

f(2)f(3)
=

8

3 · 4
=

2

3
.

Therefore

x = f−1(f(x)) = f−1(
2

3
) =

2

3
− 1 = −1

3
.

Comments. Many people successfully demonstrated that S is a group except
for checking that the element b = −a

1+a is a 2-sided inverse of b: recall that for
G to be a group, for each element a ∈ G there must be an element b ∈ G such
that a ∗ b = e and b ∗a = e. Many of you only verified that a ∗ b = e. (Of course
the multiplication is commutative here, so a ∗ b = b ∗ a, but if you want to rely
on that fact you should say you are doing so.) There will be an exercise on a
later problem set to emphasize this.
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Some people also did some of part (a) “backwards”. When you prove that
a group has an identity element, you should say “The identity is e” and then
verify that e ∗ x = x and x ∗ e = x. Likewise you should say “The inverse of x
is x′”—and explain what x′ is—and then verify that x ∗ x′ = e and x′ ∗ x = e.

Some people neglected to check that the multiplication operation is well-
defined. This should always be the first thing you look at when you are checking
if something is a group!

For the sake of clarity, it is a good idea to use a special symbol for the
composition law in a group when the addition and multiplication symbols are
being used for other things. That was the case on this problem: a∗b = a+b+ab.
Many people dropped the ∗ symbol and wrote ab = a + b + ab. I understood
what you meant when you did this, but doing this can rapidly become very
confusing. As a general rule, you should never use the same symbol for two
different operations!

Several people also seemed to be confused about the definition of a group,
especially the meaning of associativity: it was frequently confused with com-
mutativity. Make sure to get the definition straight now, or it will be a very
unpleasant semester.

Exercise 6. [Fra, §4, #35]. Show that if G is a group containing elements a
and b and (ab)2 = a2b2 then ab = ba.

Solution. Note that (ab)2 = abab and a2b2 = aabb. If (ab)2 = a2b2 then

abab = aabb

a−1ababb−1 = a−1aabbb−1 multiply both sides by a−1 on left and b−1 on right

ebae = eabe a−1a = e and bb−1 = e

ba = ab e is the identity

Comments. The most common mistake was some version of assuming the group
was abelian. Note that the notation x

y for x, y ∈ G is bad unless G is known

to be an abelian group, because xy−1 and y−1x can be different elements of G
and x

y doesn’t distiguish the order of multiplication.
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Exercise 7. Describe all of the symmetries of the picture below (assume that
it repeats to infinity in all directions):

M. C. Escher, Tessellation 85.
Source: http://britton.disted.camosun.bc.ca/jbsymteslk.htm

Solution. We may begin by performing any symmetry in D3: rotation by a
multiple of 120◦ or reflection along any of the axes indicated below on the left;
then we can perform a translation by any integer linear combination of the
vectors v and w indicated in the picture on the right.
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Thus for any element of (σ, n,m) ∈ D3×Z×Z we obtain a symmetry: first
apply σ to rotate around the center point of the picture on the left and/or reflect
the image about one of the axes indicated on the left. Then translate the image
by nv+mw, where v and w are the vectors indicated in the image on the right.

To prove that this is the set of all symmetries, suppose that σ is a symmetry
of the image. Then σ transforms the central point O (the intersection of the
axes above) to some other point P where three lizards’ faces meet. There is a

unique pair (n,m) ∈ Z2 such that ~OP = nv + mw. Let τ be translation by
nv + mw. Then τ−1σ is a symmetry of the image that takes O to O. The
symmetries of the image that preserve O are the same as the symmetries of
an equilateral triangle: D3. Thus τ−1σ ∈ D3. If we let µ be this symmetry
then µ = τ−1σ so σ = τµ. That is, σ is the composition of a symmetry in D3

followed by the translation τ .
Note that we have not described the group of all symmetries—we have just

described the set of those symmetries. We will examine the group structure
later.

Comments. Many people omitted the relfections or the translations. A large
number listed all three possibilities but forgot that they can be composed to
yield other symmetries.

Exercise 8. How many symmetries does a set with n elements have? (How
many permutations are there of a set with n elements?)

Solution. A symmetry of a set is a permutation. There are n choices for where
to move the first element, n− 1 choices for where to move the next one, n− 2
choices for where to move the third, etc. In all, the choices multiply and we get
n! permutations.

Comments. Almost everyone got this one. A few people added or combined the
choices according to other rules and got incorrect answers.
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Exercise 9. Consider the following six functions:

f1(x) = x f2(x) = 1− x f3(x) =
1

x

f4(x) =
1

1− x
f5(x) =

x

x− 1
f6(x) =

x− 1

x
.

(a) Show that these functions form a group where the group operation is
composition of functions.

Solution. Let G be the set
{
f1, f2, f3, f4, f5, f6

}
. First we have to check

that the composition of any two elements in G is also in G. This is a lot
of checking. We build the whole multiplication table:

f1 f2 f3 f4 f5 f6
f2 f1 f6 f5 f4 f3
f3 f4 f1 f2 f6 f5
f4 f3 f5 f6 f2 f1
f5 f6 f4 f3 f1 f2
f6 f5 f2 f1 f3 f4 .

This shows that composition is well-defined. Checking associativity with
the multiplication table would be tedious, but fortunately we know that
associativity holds for composition of functions in general. As we have al-
ready remarked, f1 is the left- and right-sided identity for G. Furthermore,
we can read from the multiplication table that

f−11 = f1 f−12 = f2 f−13 = f3

f−14 = f6 f−15 = f5 f−16 = f4

so every element has a 2-sided inverse.

(b) Show that this group is isomorphic to S3 by constructing an isomorphism.

Solution. We can construct an isomorphism by finding a set that is per-
muted by the fi. Let X be the set

{
−1, 12 , 2

}
. Notice that

f1(−1) = −1 f1(1/2) = 1/2 f1(2) = 2

f2(−1) = 2 f2(1/2) = 1/2 f2(2) = −1

f3(−1) = −1 f3(1/2) = 2 f3(2) = 1/2

f4(−1) = 1/2 f4(1/2) = 2 f4(2) = −1

f5(−1) = 1/2 f5(1/2) = −1 f5(2) = 2

f6(−1) = 2 f6(1/2) = −1 f6(2) = 1/2.

Therefore if we label −1 as ”1”, and we label 1/2 as ”2”, and we label 2 as
”3” then we get a map G→ S3. This must preserve composition because
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we are restricting functions to a subset. Therefore to see that ϕ is an
isomorphism we only have to check that ϕ is a bijection. Since G and S3

are both sets of the same size, it is enough to verify that ϕ is surjective.
For this we can observe that

ϕ(f1) = e ϕ(f2) = g2 ϕ(f3) = g1

ϕ(f4) = a ϕ(f5) = g3 ϕ(f6) = b,

using the notation from class for S3.

Comments. A surprisingly common mistake was to assume that f−1i = 1
fi

. The
group operation here isn’t multiplication, so the inverse is not the same thing
as the reciprocal. Remember, the inverse of the identity is always the identity,
and almost everyone recognized that f1 is the identity. So f−11 should be f1,
not f3.

Exercise 10. Let S4 be the group of symmetries of a set with 4 elements. Let
G be the group of rigid symmetries (compositions of translations, rotations,
and reflections are allowed) of a regular tetrahedron. Show that G and S4 are
isomorphic. (Hint: there is a more efficient way to do this than writing down
both multiplication tables!)

Solution. First we note that a rigid symmetry of the tetrahedron must permute
the vertices. If we choose a labelling of the vertices of the tetrahedron, then any
rigid symmetry permutes the labels. This determines a function ϕ : G → S4.
Notice that ϕ must preserve composition (it is a homomorphism) because it is
simply restriction of a function. Therefore we can prove ϕ is an isomorphism
by showing it is bijective.

To see that ϕ is injective, notice that a rigid symmetry of the tetrahedron is
determined by how it permutes the vertices: two rigid symmetries that permute
the vertices in the same way must be the same symmetry.

To see that ϕ is surjective, we let σ be a permutation in S4 and construct a
rigid symmetry s of the tetrahedron such that ϕ(s) = σ.

First, choose a rotation a of the tetrahedron that puts the vertex labelled 1
in the right place; let α = ϕ(a). Then α(1) = σ(1). Thus α−1σ is a permutation
that fixes 1.

Let b be a rotation of the tetrahedron around the axis connecting the vertex
labelled 1 to the midpoint of the opposite side such that if we define β = ϕ(b)
then β(2) = α−1σ(2). Notice that β(1) = 1. Thus β−1α−1σ is an element of S4

that fixes both 1 and 2.
This means that either β−1α−1σ = e, in which case σ = αβ = ϕ(ab) and

we can take s = ab to show that σ is in the image of ϕ, or else β−1α−1σ is the
permutation that exchanges 3 and 4 and leaves 1 and 2 fixed. In this case, let c
be the reflection through the plane containing the vertices labelled 1 and 2 and
the midpoint of the line connecting the vertices labelled 3 and 4. Then γ = ϕ(c)
exchanges 3 and 4 and leaves 1 and 2 fixed. Therefore γ = β−1α−1σ. Therefore
σ = αβγ = ϕ(abc) is once again in the image of ϕ.
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We conclude from the above argument that ϕ is surjective. As we have
already seen that it is injective, it follows that ϕ is bijective, hence an isomor-
phism.

Comments. I was pleased to see that many of you realized the homomorphism
G→ S4 could be obtained by labelling the vertices and restricting a symmetry of
the tetrahedron to them. This is still a long way from a proof, so the observation
alone didn’t get a lot of credit, but it was still the main thing I wanted you to
get from this problem.

One mistake that turned up several times was to assert that S4 and G have
the same size (the correct size is 24; there were a few incorrect calculations of
this number) and therefore must be isomorphic. On the second assignment you
will see an example of two groups of the same size that are not isomorphic.
In fact there are a large number of non-isomorphic groups of order 24. Just
checking that two groups have the same size is not enough to deduce that they
are isomorphic.

Exercise 11. Suppose that A and B are groups and f : A → B is a function
that satisfies the property

f(xy) = f(x)f(y).

(Functions of this type are called homomorphisms and will be very important
later.)

(a) Show that f(e) = e.

Solution. Since ee = e we have f(e) = f(ee) = f(e)f(e). But B is a
group, so we get

e = f(e)−1f(e) = f(e)−1f(e)f(e) = f(e)

as desired.

(b) Show that if x is in A then f(x−1) = f(x)−1.

Solution. We have f(xx−1) = f(x)f(x−1). But xx−1 = e so (making use
of the previous part of this exercise)

f(x)f(x−1) = f(e) = e.

Thus f(x−1) is the inverse of f(x).
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