Math 3140 — Fall 2012 Handout #16

Exercise 1. Is there is a field with 6 elements?

Solution. Suppose that F is a field with 6 elements. Then consider the element $1 \in F$. Let $E \subset F$ be the set of all integer multiples of 1. If $a \cdot 1, b \cdot 1 \in E$ then $a \cdot 1 + b \cdot 1 = (a + b) \cdot 1$ and $a \cdot 1 - b \cdot 1 = (a - b) \cdot 1$ and $ab \cdot 1 = (a \cdot 1)(b \cdot 1)$ are all in E. Therefore E is a ring.

Since F is finite, there must be a smallest n such that $n \cdot 1 = 0$ in F. (Here is the reason: eventually we must have $n \cdot 1 = m \cdot 1$ so $(n - m) \cdot 1 = 0$.) Therefore $E \cong \mathbb{Z}/n\mathbb{Z}$. But if n is not prime then we could find two factors a and b of n. Then $(a \cdot 1)(b \cdot 1) = 0$ in E. This means that E contains zero divisors. But E is contained in F so this means F also contains zero divisors, so F can't be a field.

The *n* that appeared above is the order of 1 in the additive group of *F*. Since *F* has 6 elements, this means that *n* must be a divisor of 6. Therefore *F* contains either \mathbf{F}_2 or \mathbf{F}_3 .

Suppose that F contains \mathbf{F}_3 . Pick some $x \in F$ that is not in \mathbf{F}_3 . Then consider all of the elements of F of the form ax + b with $a, b \in \mathbf{F}_3$. There are 9 expressions like this and only 6 elements in F, so we must have ax + b = a'x + b' for some choices of $a, b \in \mathbf{F}_3$ and $a', b' \in \mathbf{F}_3$. But then (a - a')x + (b - b') = 0, which means $x = -(a - a')^{-1}(b - b')$. But that means $x \in \mathbf{F}_3$: contradiction!

Now suppose that F contained \mathbf{F}_2 . Pick some $x \in F$ that is not in \mathbf{F}_2 . Then look at all $a + bx \in F$ with $a, b \in \mathbf{F}_2$. There can only be 4 of these and F has 6 elements, so there must be some $y \in \mathbf{F}_2$ that can't be expressed as a + bx for any $a, b \in \mathbf{F}_2$. Then look at all $a + bx + cy \in F$ with $a, b, c \in \mathbf{F}_2$. There are 8 such expressions and 6 elements, so there must be two choices a, b, c and a', b', c' in \mathbf{F}_2 with

$$a + bx + cy = a' + b'x + c'y.$$

Then

$$(a - a') + (b - b')x + (c - c')y = 0.$$

We can't have c = c', because then $x = -(b - b')^{-1}(a - a')$ is in \mathbf{F}_2 . But then $y = (c - c')^{-1}(a - a') + (c - c')^{-1}(b - b')x$ can be expressed as a combination of 1 and x. Either way, it's a contradiction!