Math 3140 — Fall 2012 Handout #14

Exercise 1. (a) Is the ring $\mathbf{F}_2[x]/(x^2+1)$ a field?

(b) Is the ring $\mathbf{F}_2[x]/(x^2+x)$ a field?

Exercise 2. Let A be the ring $\mathbf{F}_2[x]/(x^2 + x + 1)$.

- (a) How many elements does A have? List them.
- (b) Which elements of A are invertible?

Exercise 3. Let B be the ring $\mathbf{F}_2[x]/(x^3 + x + 1)$.

- (a) How many elements does B have? List them.
- (b) Which elements of B are invertible?

Exercise 4. Let C be the ring $\mathbf{F}_3[x]/(x^2+1)$.

- (a) How many elements does C have? List them.
- (b) Which elements of C are invertible?
- (c) Is C isomorphic to $\mathbf{F}_3 \times \mathbf{F}_3$?
- **Exercise 5.** Let D be the ring $\mathbf{F}_5[x]/(x^2+1)$.
 - (a) Find all of the elements y in $\mathbf{F}_5 \times \mathbf{F}_5$ such that $y^2 + 1 = 0$.
 - (b) Use your list to construct an isomorphism $\mathbf{F}_5[x]/(x^2+1) \cong \mathbf{F}_5 \times \mathbf{F}_5$.

Exercise 6. (a) Make a list of prime numbers p for which $\mathbf{F}_p[x]/(x^2+1) \cong \mathbf{F}_p \times \mathbf{F}_p$.

- (b) Make a list of prime numbers p for which $\mathbf{F}_p[x]/(x^2+1)$ is a field.
- (c) Are there any prime numbers for which neither of the above occurs?
- (d) Make a conjecture about the general pattern.

Exercise 7. Let

$$A = \left\{ \begin{pmatrix} a & a+b \\ b & a \end{pmatrix} \middle| a, b \in \mathbf{F}_2 \right\}.$$

- (a) How many elements does A have? List them.
- (b) Verify that if X and Y are elements of A then XY is an element of A.
- (c) (skip in class) Verify that A is a ring.
- (d) Which elements of A are invertible?

Exercise 8. Which of the following rings are isomorphic to each other?

- (i) the ring A from the previous exercise
- (ii) $\mathbf{F}_2[x]/(x^2+1)$
- (iii) $\mathbf{F}_2[x]/(x^2)$
- (iv) $\mathbf{F}_2 \times \mathbf{F}_2$
- (v) $\mathbf{F}_2[x]/(x^2+x)$
- (vi) $\mathbf{F}_2[x]/(x^2 + x + 1)$

Exercise 9. How many non-isomorphic commutative rings can you get with the construction

 $\mathbf{F}_3[x]/(x^2 + ax + b)$

where $a, b \in \mathbf{F}_3$?

Exercise 10. Can you construct a field with

- (a) 10 elements? (e) 25 elements?
- (b) 15 elements? (f) 27 elements?
- (c) 16 elements? (g) 12 elements?
- (d) 21 elements? (h) 18 elements?