Math 3140 — Fall 2012 Handout #13

Exercise 1. Each of the rings in the first list below is isomorphic to one of the rings in the second list. Determine which ones and construct the isomorphisms.

- (a) $\mathbf{R}[x]/(x^2-1)$
- (b) $\mathbf{R}[x]/(x^2+1)$
- (c) $\mathbf{R}[x]/(x^2)$
- (i) the subring of $M_2(\mathbf{R})$ consisting of all matrices of the form $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ with $a, b \in \mathbf{R}$

(ii) the subring of $M_2(\mathbf{R})$ consisting of all matrices of the form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ with $a, b \in \mathbf{R}$

(iii) the subring of $M_2(\mathbf{R})$ consisting of all matrices of the form $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ with $a, b \in \mathbf{R}$

Exercise 2. (a) For what values of λ is $\mathbf{R}[x]/(x^2 - \lambda)$ isomorphic to $\mathbf{R} \times \mathbf{R}$?

(b) For what values of λ is $\mathbf{R}[x]/(x^2 - \lambda)$ isomorphic to **C**?

Exercise 3. (a) Is $\mathbf{Q}[x]/(x^2-4)$ isomorphic to $\mathbf{Z}[y]/(y^2-1)$?

- (b) Is $\mathbf{Q}[x]/(x^2-3)$ isomorphic to $\mathbf{Z}[y]/(y^2-1)$?
- (c) For which values of λ is $\mathbf{Q}[x]/(x^2 \lambda)$ isomorphic to $\mathbf{Q}[y]/(y^2 1)$?

Exercise 4. Suppose that λ and μ are integers such that $\mathbf{Q}[x]/(x^2 - \lambda)$ and $\mathbf{Q}[x]/(x^2 - \mu)$ are isomorphic to each other. What does this tell us about λ and μ ? (Hint: what elements of $\mathbf{Q}[x]/(x^2 - \lambda)$ are squares?)

Exercise 5. Find an isomorphism between $\mathbf{R}[x]/(x^3-1)$ and a familiar ring.