Math 3140 — Fall 2012 Handout #5

Exercise 1. In this problem we will study the regular octagon below, with vertices labelled as indicated:

Let X be the set of lines connecting vertices of a regular octagon. Note that only some of these lines are drawn above. We will need a convenient notation for the elements of X so we will write \overline{ab} to designate the line connecting vertex a to vertex b.

- 1. How many elements does X have?
- 2. Let D_8 be the group of rigid symmetries of a regular octagon. How many elements does D_8 have? In order to talk about elements of D_8 , we will use ρ to denote rotation by $\frac{\pi}{4}$ and let τ denote reflection through the line connecting vertex 1 to vertex 5.

Using this notation, list all of the elements of D_8 .

3. For each $\sigma \in D_8$, let $T_{\sigma} : X \to X$ be the following function:

$$T_{\sigma}(\overline{ab}) = \overline{\sigma(a)\sigma(b)}.$$

Show that $T_{\sigma} \in S_X$.

- 4. In order to get a feel for what T_{σ} does, draw the lines $T_{\rho}(\overline{24}), T_{\tau}(\overline{17}), \text{ and } T_{\rho^2\tau}(\overline{25})$. Do more examples until you feel you understand how T_{σ} works.
- 5. Show that the function $\varphi: D_8 \to S_X$ defined by $\varphi(\sigma) = T_{\sigma}$ is a homomorphism.
- 6. Draw a picture with one vertex for each element of X and an arrow from \overline{ab} to \overline{cd} whenever there is a $\sigma \in D_8$ such that $T_{\sigma}(\overline{ab}) = \overline{cd}$.
- 7. How many orbits does the action of D_8 on X have? What are the sizes of the orbits.
- 8. Let X_1, \ldots, X_k denote the orbits of this action. Verify the formula

(size of
$$X$$
) = $\sum_{i=1}^{k}$ (size of X_i)

9. Let x be an element of X. Let $G_x \subset D_8$ be the isotropy subgroup of x and let O_x be the orbit of x. How are the sizes of G_x and O_x related?