Math 3140 — Fall 2012 Handout #4

Exercise 1. Let X be the set $\{1, 2, 3\}^3$ of triples of integers between 1 and 3. Let $T_{\sigma}(i, j, k) = (\sigma(i), \sigma(j), \sigma(k))$ and let $U_{\sigma}(x_i, x_j, x_k) = (x_{\sigma(i)}, x_{\sigma(j)}, x_{\sigma(k)})$. Let $f: S_3 \to S_X$ and $g: S_3 \to S_X$ be the functions $f(\sigma) = T_{\sigma}$ and $g(\sigma) = U_{\sigma}$. Are these homomorphisms?

Solution. The function f is a homomorphism but g is not. For example, let's compare $g((12)(123)) = g(23) = U_{(23)}$ with $g(12)g(123) = U_{(12)}U_{(123)}$. We can compare these functions by looking at how they act on the element $(1, 2, 3) \in X$. We have

$$U_{(23)}(1,2,3) = (1,3,2)$$

$$U_{(12)}U_{(123)}(1,2,3) = U_{(12)}(2,3,1) = (3,2,1).$$

These are not the same, so the functions $U_{(12)}U_{(123)}$ and $U_{(23)}$ are different.

On the other hand, we can verify that $f(\sigma\tau) = T_{\sigma\tau}$ is the same as $f(\sigma)f(\tau) = T_{\sigma}T_{\tau}$. Here is the verification: To see that two functions are the same we have to check that they have the same effect when applied to any element (i, j, k) of X. We have

$$T_{\sigma}T_{\tau}(i,j,k) = T_{\sigma}(T_{\tau}(i,j,k)) = T_{\sigma}(\tau(i),\tau(j),\tau(k)) = (\sigma\tau(i),\sigma\tau(j),\sigma\tau(k))$$
$$T_{\sigma\tau}(i,j,k) = (\sigma\tau(i),\sigma\tau(j),\sigma\tau(k)).$$