Math 3140 — Fall 2012 Handout #3

Exercise 1. Let $X = \{1, 2, 3\}^3$ be the set of all triples (i, j, k) where i, j, and k are integers between 1 and 3.

- 1. How many elements does X have?
- 2. Let S_X be the group of symmetries of X. How many elements does S_X have?
- 3. For each $\sigma \in S_3$, let $T_{\sigma} : X \to X$ be the function defined by the following rule

$$T_{\sigma}(x_1, x_2, x_3) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)}).$$

Show that $T_{\sigma} \in S_X$. (Recall, S_X is defined to be the set of bijective functions from X to itself.)

4. Let $\varphi: S_3 \to S_X$ be the function

$$\varphi(\sigma) = T_{\sigma}.$$

Show that φ is a homomorphism.

- 5. Is φ surjective?
- 6. Is φ injective?
- 7. φ is known as a **group action** because it permits us to use the elements of S_3 to **act on** X. Draw a picture of the elements of X with arrows indicating how the permutation $T_{(123)}$ acts on X.
- 8. Now draw a picture showing how $T_{(12)}$ acts on X.
- 9. Finally, draw a picture that shows all of the T_{σ} acting on X, for every $\sigma \in S_3$. What features can you recognize in this picture?
- 10. Observe that there are "components" in your picture above that are not connected by any arrows. These are known as **orbits** of the group action. How many orbits are there? How large is each orbit?
- 11. Let X_1, \ldots, X_k be the orbits of the group action φ . Verify the following formula:

(size of
$$X$$
) = $\sum_{i=1}^{k}$ (size of X_i)

Come up with a reason why this formula should be true.

- 12. Consider the element $(1,1,2) \in X$. Let $G \subset S_3$ be the collection of $\sigma \in S_3$ such that $T_{\sigma}(1,1,2) = (1,1,2)$. Show that G is a subgroup of S_3 . This is known as the **isotropy subgroup** or **stabilizer** of (1,1,2).
- 13. For each element x = (i, j, k) of X, let G_x be its isotropy subgroup of S_3 . Show that G_x is a subgroup of S_3 .
- 14. Choose an element of each orbit of the S_3 action on X and compute the size of its isotropy subgroup of S_3 .
- 15. Let O_x denote the orbit of x under the action φ . Formulate a conjecture relating the sizes of O_x , G_x , and S_3 .