Math 3140 — Fall 2012 Handout #2

Exercise 1. Let G be the set of pairs (a, b) where $a \in \mathbb{Z}/3\mathbb{Z}$ and $b \in \mathbb{Z}/4\mathbb{Z}$. Give G the following operation:

$$(a,b) + (a',b') = (a + a', b + b').$$

This is a group.

- (i) What is the identity element of G?
- (ii) What is the inverse of (a, b) in G?
- (iii) Verify that the operation defined above is associative.
- (iv) Compute the number of elements in $\mathbf{Z}/3\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$.
- (v) Compute the number of elements of $\mathbf{Z}/12\mathbf{Z}$.
- (vi) Draw the orbit of (1, 1) in G.
- (vii) Define a function $\varphi: \mathbf{Z}/12\mathbf{Z} \to G$ by the rule

$$\varphi(x) = (x \bmod 3, x \bmod 4).$$

Show that φ is well defined.

- (viii) Show that φ is a homomorphism.
- (ix) Show that φ is injective.
- (x) Conclude that φ is an isomorphism.

Exercise 2. Let G be the set of pairs (a, b) where $a \in \mathbb{Z}/4\mathbb{Z}$ and $b \in \mathbb{Z}/6\mathbb{Z}$. Give G the following operation:

$$(a,b) + (a',b') = (a + a', b + b').$$

This is a group.

- (i) What is the identity element of G?
- (ii) What is the inverse of (a, b) in G?
- (iii) Verify that the operation defined above is associative.
- (iv) Draw the orbit of (1, 1) in G.
- (v) Define a function $\varphi: \mathbf{Z}/24\mathbf{Z} \to G$ by the rule

$$\varphi(x) = (x \mod 4, x \mod 6).$$

Show that φ is well defined.

- (vi) Show that φ is a homomorphism.
- (vii) Is φ injective? Justify your answer.
- (viii) Is φ surjective? Justify your answer.
- (ix) Is G isomorphic to $\mathbf{Z}/24\mathbf{Z}$?
- (x) What is the kernel of φ ?

(xi) Find two non-trivial groups A and B such that $\mathbf{Z}/24\mathbf{Z}$ is isomorphic to $A \times B$.

Definition 1. Suppose that G and H are groups, the product of G and H is the set of pairs (g, h) where $g \in G$ and $h \in H$ with the group law

$$(g,h)(g',h') = (gg',hh').$$

Exercise 3. If p is a prime number, is $\mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$ isomorphic to $\mathbf{Z}/p^2\mathbf{Z}$?

Exercise 4. Formulate a conjecture about when $\mathbf{Z}/mn\mathbf{Z}$ is isomorphic to $\mathbf{Z}/m\mathbf{Z} \times \mathbf{Z}/n\mathbf{Z}$.

Exercise 5. (i) Is D_n isomorphic to the product of $\mathbf{Z}/n\mathbf{Z}$ and $\mathbf{Z}/2\mathbf{Z}$?

(ii) Is S_n isomorphic to $A_n \times \{\pm 1\}$?

Exercise 6. Let G be the group of rigid symmetries of the following pattern:

$\cdots EEEEEEEEEEEEEEEEEEEEEEEEEEE\cdots$

The dots mean that the pattern continues to infinity in both directions. Describe G as the product of two familiar groups.